
1

S.Y.B.Sc. (Computer Science)

Paper - II - Section - II

Java Programming

Unit I : Introduction to Java Programming

Introduction : History of Java, Java features, different types of
Java programs, Differentiate Java with C and C++, JVM, JIT and
JRE.

Java Basics : Variables and data types, declaring variables, literals
: numeric, Boolean, character and string literals, keywords, type
conversion and casting. Standard default values.

Java Operators : Arithmetic, relational, logical, assignment,
increment and decrement, conditional, bitwise, precedence and
order of evaluation, statement and expressions, string arithmetic.

Loops and Controls : Control statements for decision making :
select statements (if statement, if … else … statement, if …. Else
… if … statement, switch statement), goto statement, looping (while
loop, do … while loop and for loop), nested loops, breaking out of
loops (break and continue statements), labeled loops.

Arrays and Strings : One and two dimensional array, creating an
array, strings, stringbuffer.

Introduction of Classes : Defining a class, creating instance and
class members : creating object of a class, accessing instance
variables of a class, creating methods, naming methods of a class,
accessing methods of a class, constructor, parameterized
constructor, ‘this’ keywood, garbage collection, finalize() method,
methods overloading, constructor overloading, nested and inner
classes, static member.

Visibility control : public access, friendly access, protected
access, private access, private protected access.

Unit : II Inheritance, Interface and Packages

Inheritance : Various types of inheritance, super and subclasses,
keywords - ‘extends’, ‘super’, constructor chaining, method
overriding, final variables and methods, final classes, abstract
method and classes, dynamic method dispatch.

Interface : Defining interfaces, extending interfaces, implementing
interfaces.

2

Packages : System packages, using system package, naming
conventions, creating packages, accessing a package, using a
package, adding a class to a package
Exception Handling : Exception-handling fundamentals, Exception
types, Uncaught exceptions, Using try and catch, Multiple catch
clauses, nested try statements, use of throw, throws and finally
keywords, Java’s Built-in exceptions, User defined exception,
Chained Exception.

Streams and File I/O : Concept of streams, stream classes, byte
stream classes : InputStream, and OutputStream, character stream
classes : Reader and Writer, Difference between byte stream
classes and character stream classes, other I/O classes. File class,
Reading / writing bytes / characters, random access file,
serialization.

Unit III : Java Applets and Graphics Programming

Applets : Difference of applet and application, creating applets,
applet life cycle, passing parameters to applets.

Graphics, Fonts and Color : The graphics class, painting, repainting
and updating an applet, sizing graphics. Font class, draw graphical
figures - lines and rectangle, circle and ellipse, drawing arcs,
drawing polygons. Working with Colors : Color methods, setting the
paint mode.

AWT package : Window fundamentals : Component, container,
Panel, Window, Frame, and Canvas. AWT Controls : labels,
buttons, textfield, textarea, checkboxes, checkboxgroup, choice,
and list. Layout Managers : FlowLayout, BorderLayout, GridLayout.

Event Handling : The Delegation Event Model, Event classes
(ActionEvent, FocusEvent, InputEvent, ItemEvent, KeyEvent,
MouseEvent, MouseWheelEvent, TextEvent, WindowsEvent) and
various listener interfaces (ActionListener, FocusListerer.
ItemListener, KeyListener, MouseListener, MouseMotionListener,
MouseWheelListener, TextListener, WindowFocusListener,
WindowListener)

Main References :

1. Chapters 6-8, 10, 17, 19-22, Java 2 : The Complete
Reference - Tata McGraw Hill, Fifth edition.

2. Chapters 2-7, 9, 10, 11, 16, 20, 21, 22 of Programming with
Java A primer, by E. Balagurusamy 3rd Edition.

3

Other References :

1. Programming in Java, Schaum Series.
2. Java2 Programming - Black Book, Dreamtech Press.

Practical List :

1. Write a Java program to create a Java class : (a) without
instance variables and methods, (b) with instance variables
and without methods, (c) without instance variables and with
methods. (d) with instance variables and methods.

2. Write a Java program that illustrates the concepts of
selection statement, looping, nested loops, breaking out of
loop.

3. Write a Java Program that illustrates the concepts of one,
two dimension arrays and strings.

4. Write a Java program that illustrates the concepts of Java
class that includes (a) constructor with and without
parameters, (b) Overloading methods, (c) Overriding
methods.

5. Write a Java program to demonstrate inheritance by creating
suitable classes.

6. Create a Java package, interface and implement in Java
program.

7. Write a program that illustrates the error handling using
exception handling.

8. Write a program that illustrates the concepts of stream
classes.

9. Write a Java applet to demonstrate graphics, font and Color
classes.

10.Write a Java program to illustrate AWT package, Event
classes and listeners.

4

1

INTRODUCTION TO JAVA

Unit Structure:
1.0 Objectives

1.1 History and Introduction to Java

1.2 Java Features

1.3 Different types of Java Programs

1.4 Differentiate Java with C and C++

1.5 Sample Java Program

1.6 Java Variables and Data Types

1.7 Type Conversion and Casting

1.8 Summary

1.9 Unit end exercise

1.10 Further Reading

1.0 OBJECTIVES

The objectives of this chapter are to learn the history of Java
and basic of the Java language. Here we will learn why Java was
created and features of the Java language that makes it a popular
language.

1.1 HISTORY AND INTRODUCTION TO JAVA

History

Java is related to C++, which is a direct descendent of C.
Much of the features of Java are inherited from these two
languages. Each innovation in language design was driven by the
need to solve a fundamental problem that the preceding languages
could not solve. Java was conceived by James Gosling, Patrick
Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun
Microsystems, Inc. in 1991. This language was initially called "Oak"
but was renamed "Java" in 1995.

The primary motivation was the need for a platform-
independent language that could be used to create software to be
embedded in various consumer electronic devices, such as
microwave ovens and remote controls. Java derives much of its
character from C and C++. This is by intent. The Java designers

5

knew that using the familiar syntax of C and echoing the object-
oriented features of C++ would make their language appealing to
the C/C++ programmers.

Introduction to Java

Java is a modern, evolutionary computing language that
combines an elegant language design with powerful features that
were previously available primarily in specialty languages. In
addition to the core language components, Java software
distributions include many powerful, supporting software libraries
for tasks such as database, network, and graphical user interface
(GUI) programming. In this chapter, we focus on the core Java
language features.

Java is a true object-oriented (OO) programming language.
The main implication of this statement is that in order to write
programs with Java, you must work within its object-oriented
structure.

Object-oriented languages provide a framework for
designing programs that represent real-world entities such as cars,
employees, insurance policies, and so on. Representing real-world
entities with non object-oriented languages is difficult because it's
necessary to describe entities such as a truck with rather primitive
language constructs such as Pascal's record, C's struct, and others
that represent data only.

The behavior of an entity must be handled separately with
language constructs such as procedures and/or functions, hence,
the term procedural programming languages. Given this separation,
the programmer must manually associate a data structure with the
appropriate procedures that operate on, that is, manipulate, the
data.

Java can be used to create two types of programs:
applications and applets. An application is a program that runs on
your computer, under the operating system of that computer. An
applet is an application designed to be transmitted over the Internet
and executed by a Java-compatible Web browser. An applet is
actually a tiny Java program, dynamically downloaded across the
network, just like an image, sound file, or video clip.

1.2 JAVA FEATURES

The Java programming language is a high-level language
that can be characterized by:

6

 Simple - Java was designed to be easy for the professional
programmer to learn and use effectively. Because Java inherits
the C/C++ syntax and many of the object-oriented features of
C++, most programmers have little trouble learning Java.

 Secure - Java does not use memory pointers explicitly. All the
programs in java are run under an area known as the sand box.
Security manager determines the accessibility options of a class
like reading and writing a file to the local disk.

 Portable - The feature Write-once-run-anywhere makes the
java language portable provided that the system must have
interpreter for the JVM. Java also has the standard data size
irrespective of operating system or the processor. These
features make the java as a portable language.

 Object-oriented - The object model in Java is simple and easy
to extend, while simple types, such as integers, are kept as high
performance non-objects. It is a fully Object Oriented language
because object is at the outer most level of data structure in
java. No stand alone methods, constants, and variables are
there in java. Everything in java is object even the primitive data
types can also be converted into object by using the wrapper
class.

 Robust - Java restricts you in a few key areas, to force you to
find your mistakes early in program development. At the same
time, Java frees you from having to worry about many of the
most common causes of programming errors. Java has the
strong memory allocation and automatic garbage collection
mechanism. It provides the powerful exception handling and
type checking mechanism as compare to other programming
languages. All of the above features make the java language
robust.

 Multithreaded - Java supports multithreaded programming,
which allows you to write programs that do many things
simultaneously. Multiple threads execute instructions according
to the program code in a process or a program. Multithreading
works the similar way as multiple processes run on one
computer.

 Architecture-neutral - The Java compiler supports this feature
by generating byte code instructions, to be easily interpreted on
any machine and to be easily translated into native machine
code on the fly. The compiler generates an architecture-neutral
object file format to enable a Java application to execute
anywhere on the network and then the compiled code is

7

executed on many processors, given the presence of the Java
runtime system.

 Interpreted - Java enables the creation of cross-platform
programs by compiling into an intermediate representation
called Java bytecode. This code can be interpreted on any
system that provides a Java Virtual Machine.

 High performance - Java uses native code usage, and
lightweight process called threads. In the beginning
interpretation of bytecode resulted the performance slow but the
advance version of JVM uses the adaptive and just in time
compilation technique that improves the performance.

 Distributed - Java is designed for the distributed environment
of the Internet, because it handles TCP/IP protocols. Internet
programmers can call functions on these protocols and can get
access the files from any remote machine on the internet rather
than writing codes on their local system.

 Dynamic - Java programs carry with them substantial amounts
of run-time type information that is used to verify and resolve
accesses to objects at run time. While executing the java
program the user can get the required files dynamically from a
local drive or from a computer thousands of miles away from the
user just by connecting with the Internet.

Check Your Progress
1) Java is a true _____________ programming language.

2) Java does not use memory pointers _______.

1.3 DIFFERENT TYPES OF JAVA PROGRAMS

Java is a programming language that’s used to build
programs that can work on the local machine and on the internet as
well. So there are various categories of programs that can be
developed in Java.

 STAND-ALONE APPLICATIONS - Console Applications - An
application is a program that runs on the computer under the
operating system of your computer. Creating an application in
java is similar to doing so in any other computer language. The
application can either be GUI based or console based.

 WEB APPLICATIONS - These are the applications which are
web-based in nature and require a web browser for execution.
The Web applications makes use of a Server to store the data,

8

and every time a user requests to execute that application, the
request is passed on to the server for suitable reply. E.g. Applet
and Servlet. Applets are Java programs that are created
specially to work on the internet. In Servlets, the client sends a
request to a server. The server processes the request and
sends a response back to the client.

 DISTRIBUTED APPLICATIONS - It requires a server to run
these applications. A number of servers are used
simultaneously for backup to prevent any data losses.

 CLIENT SERVER APPLICATIONS - These applications too
make use of web technology for their execution. They follow
simple Client-Server model, where a client makes requests
directly to the server.

1.4 DIFFERENTIATE JAVA WITH C AND C++

Major differences between C and JAVA are

 JAVA is Object-Oriented while C is procedural - Most
differences between the features of the two languages arise due
to the use of different programming paradigms. C is more
procedure-oriented while JAVA is data-oriented.

 Java is an Interpreted language while C is a compiled language-
A C compiler takes your code & translates it into something the
machine can understand. While with JAVA, the code is first
transformed to what is called the bytecode. This bytecode is
then executed by the JVM(Java Virtual Machine). For the same
reason, JAVA code is more portable.

 C is a low-level language while JAVA is a high-level language.

 C uses the top-down approach while JAVA uses the bottom-up
approach - In C, formulating the program begins by defining the
whole and then splitting them into smaller elements. JAVA
follows the bottom-up approach where the smaller elements
combine together to form the whole.

 Pointer go backstage in JAVA while C requires explicit handling
of pointers - When it comes to JAVA, we don't need the *'s & &'s
to deal with pointers & their addressing. More formally, there is
no pointer syntax required in JAVA. It does what it needs to do.
While in JAVA, we do create references for objects.

 JAVA supports Method Overloading while C does not support
overloading at all - JAVA supports function or method

9

overloading-that is we can have two or more functions with the
same name.

 The standard Input & Output Functions - Although this
difference might not hold any conceptual significance, but it's
maybe just the tradition. C uses the printf & scanf functions as
its standard input & output while JAVA uses the System. out.
print & System. In .read functions.

 Exception Handling in JAVA And the errors & crashes in C -
When an error occurs in a Java program it results in an
exception being thrown. It can then be handled using various
exception handling techniques. While in C, if there's an error,
there IS an error.

Major differences between C++ and JAVA are

 C++ was mainly designed for systems programming and Java
was created initially to support network computing.

 C++ supports pointers whereas Java does not pointers.

 At compilation time Java Source code converts into byte code
.The interpreter execute this byte code at run time and gives
output. C++ run and compile using compiler which converts
source code into machine level languages so C++ is plate from
dependents

 Java is platform independent language but C++ is depends
upon operating system machine etc.

 Java uses compiler and interpreter both and in C++ their is only
compiler

 C++ supports operator overloading multiple inheritance but java
does not.

 Java does is a similar to C++ but not have all the complicated
aspects of C++ (ex: Pointers, templates, unions, operator
overloading, structures etc..)

 Thread support is built-in Java but not in C++.

 Internet support is built-in Java but not in C++.

 Java does not support header file, include library files just like
C++ .Java use import to include different Classes and methods.

10

 Java does not support default arguments like C++.

 Exception and Auto Garbage Collector handling in Java is
different because there are no destructors into Java.

 Java has method overloading, but no operator overloading just
like C++.

Check Your Progress
1) JAVA is a high-level language (True/False)

2) Java does not support pointers (True/False)

1.5 SAMPLE JAVA PROGRAM

Let us start Java programming with a small example. This
program will show the output “Hello World”

class HelloWorld
{

public static void main(String args[])
{

System.out.println(“Hello World”);
}

}

Now let us understand the program line by line.
 Class Declaration – This line declares a class. class is an

object-oriented construct and a keyword which states that the
class declaration follows. HelloWorld is the name of the class.

 Opening and Closing Brace - The entire class definition,
including all of its members, will be between the opening curly
brace ({) and the closing curly brace (}). The use of the curly
braces in Java is identical to the way they are used in C and
C++.

 Main Line – The main() function is similar to the the main() in
C/C++. Every Java application program must include the main()
method. The keyword public is an access specifier that
declares the main method accessible to all other classes. The
next keyword static states that this method belongs to the entire
class. The keyword static allows main() to be called without
having to instantiate a particular instance of the class. main() is
the method called when a Java application begins. In main(),
there is only one parameter, String args[] declares a parameter
named args, which is an array of instances of the class String.
The type modifier void states that the main() method does not
return any value.

11

 Output Line – This line is similar to the printf() of C or cout <<
of C++. The println() method is a member of the out object,
which is a static data member of System class. System is a
predefined class that provides access to the system, and out is
the output stream that is connected to the console.

Output:
Hello World

1.6 JAVA VARIABLES AND DATA TYPES

The Java programming language defines the following kinds of
variables:

 Instance Variables (Non-Static Fields) Non-static fields are
also known as instance variables because their values are
unique to each instance of a class (to each object, in other
words).

 Class Variables (Static Fields) A class variable is any field
declared with the static modifier; this tells the compiler that there
is exactly one copy of this variable in existence, regardless of
how many times the class has been instantiated.

 Local Variables - Similar to how an object stores its state in
fields, a method will often store its temporary state in local
variables. The syntax for declaring a local variable is similar to
declaring a field (for example, int count = 0;).

 Parameters - The important thing to remember is that
parameters are always classified as "variables" not "fields". This
applies to other parameter-accepting constructs as well (such
as constructors and exception handlers) that you'll learn about
later.

The rules and conventions for naming your variables can be
summarized as follows:

 Variable names are case-sensitive. A variable's name can be
any legal identifier — an unlimited-length sequence of Unicode
letters and digits, beginning with a letter, the dollar sign "$", or
the underscore character "_". The convention, however, is to
always begin your variable names with a letter, not "$" or "_".

 Subsequent characters may be letters, digits, dollar signs, or
underscore characters. When choosing a name for your
variables, use full words instead of cryptic abbreviations. Doing
so will make your code easier to read and understand. Also

12

keep in mind that the name you choose must not be a keyword
or reserved word.

 If the name you choose consists of only one word, spell that
word in all lowercase letters. If it consists of more than one
word, capitalize the first letter of each subsequent word. The
names getText and currentValue are prime examples of this
convention. If your variable stores a constant value, such as
static final int NUM_SUBJECTS = 6, the convention changes
slightly, capitalizing every letter and separating subsequent
words with the underscore character. By convention, the
underscore character is never used elsewhere.

Primitive Data Types

The Java programming language is statically-typed, which
means that all variables must first be declared before they can be
used. A primitive type is predefined by the language and is named
by a reserved keyword. Primitive values do not share state with
other primitive values. The eight primitive data types supported by
the Java programming language are:

 byte: The byte data type is an 8-bit signed two's complement
integer. It has a minimum value of -128 and a maximum value of
127 (inclusive).

 short: The short data type is a 16-bit signed two's complement
integer. It has a minimum value of -32,768 and a maximum
value of 32,767 (inclusive).

 int: The int data type is a 32-bit signed two's complement
integer. It has a minimum value of -2,147,483,648 and a
maximum value of 2,147,483,647 (inclusive). For integral
values, this data type is generally the default choice unless
there is a reason to choose something else.

 long: The long data type is a 64-bit signed two's complement
integer. It has a minimum value of -9,223,372,036,854,775,808
and a maximum value of 9,223,372,036,854,775,807 (inclusive).

 float: The float data type is a single-precision 32-bit IEEE 754
floating point. Use a float (instead of double) if you need to save
memory in large arrays of floating point numbers. This data type
should never be used for precise values, such as currency.

 double: The double data type is a double-precision 64-bit IEEE
754 floating point. For decimal values, this data type is generally
the default choice. As mentioned above, this data type should
never be used for precise values, such as currency.

13

 boolean: The boolean data type has only two possible values:
true and false. Use this data type for simple flags that track
true/false conditions.

 char: The char data type is a single 16-bit Unicode character. It
has a minimum value of '\u0000' (or 0) and a maximum value of
'\uffff' (or 65,535 inclusive).

Default Values

Fields that are declared but not initialized will be set to a
reasonable default by the compiler. This default will be zero or null,
depending on the data type. Relying on such default values,
however, is generally considered bad programming style. The
following chart summarizes the default values for the above data
types.

Data Type Default Value (for fields)

byte 0

short 0

Int 0

long 0L

float 0.0f

double 0.0d

char '\u0000'

String (or any object) null

boolean false

Literals

The new keyword isn't used when initializing a variable of a
primitive type. Primitive types are special data types built into the
language; they are not objects created from a class. A literal is the
source code representation of a fixed value; literals are represented
directly in your code without requiring computation. As shown
below, it's possible to assign a literal to a variable of a primitive
type:

boolean result = false;
char capitalG = 'G';
byte z = 100;
short x = 10000;
int y = 100000;

The integral types (byte, short, int, and long) can be
expressed using decimal, octal, or hexadecimal number systems.
Decimal is the number system you already use every day; it's
based on 10 digits, numbered 0 through 9. The octal number
system is base 8, consisting of the digits 0 through 7. The

14

hexadecimal system is base 16, whose digits are the numbers 0
through 9 and the letters A through F.

The floating point types (float and double) can also be
expressed using E or e (for scientific notation), F or f (32-bit float
literal) and D or d (64-bit double literal; this is the default and by
convention is omitted).

double d1 = 123.4;
double d2 = 1.234e2; //same value as in scientific notation
float f1 = 123.4f;

The Java programming language also supports a few special
escape sequences for char and String literals: \b (backspace), \t
(tab), \n (line feed), \f (form feed), \r (carriage return), \" (double
quote), \' (single quote), and \\ (backslash).

There's also a special null literal that can be used as a value
for any reference type. null may be assigned to any variable, except
variables of primitive types. Finally, there's also a special kind of
literal called a class literal, formed by taking a type name and
appending ".class"; for example, String.class. This refers to the
object (of type Class) that represents the type itself.

Check Your Progress
1) The int data type is a _____-bit signed two's complement integer.

2) A ______ is the source code representation of a fixed value.

1.6 TYPE CONVERSION AND CASTING

It is fairly common to assign a value of one type to a variable
of another type. If the two types are compatible, then Java will
perform the conversion automatically. For example, it is always
possible to assign an int value to a long variable. However, not all
types are compatible, and thus, not all type conversions are
implicitly allowed. For instance, there is no conversion defined from
double to byte. To do so, you must use a cast, which performs an
explicit conversion between incompatible types.

Java's Automatic Conversions - When one type of data is
assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

• Two types are compatible.
• Destination type is larger than the source type.

15

When these two conditions are met, a widening conversion
takes place. For example, the int type is always large enough to
hold all valid byte values, so no explicit cast statement is required.

For widening conversions, the numeric types, including
integer and floating-point types, are compatible with each other.
However, the numeric types are not compatible with char or
boolean. Also, char and boolean are not compatible with each
other. Java also performs an automatic type conversion when
storing a literal integer constant into variables of type byte, short, or
long.

Casting Incompatible Types - Although the automatic type
conversions are helpful, they will not fulfill all needs. For example,
what if you want to assign an int value to a byte variable? This
conversion will not be performed automatically, because a byte is
smaller than an int. To create a conversion between two
incompatible types, you must use a cast. A cast is simply an explicit
type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified
value to. For example, the following fragment casts an int to a byte.
If the integer's value is larger than the range of a byte, it will be
reduced modulo (the remainder of an integer division by the) byte's
range.

int x;
byte y;
// ...
y = (byte) x;

A different type of conversion will occur when a floating-point
value is assigned to an integer type: truncation. As you know,
integers do not have fractional components. Thus, when a floating-
point value is assigned to an integer type, the fractional component
is lost. For example, if the value 1.23 is assigned to an integer, the
resulting value will simply be 1.

The following program demonstrates some type conversions
that require casts:

class Conversion{
public static void main(String args[]) {

byte x;
int y = 257;
double z = 323.142;
System.out.println("\\nConversion of int to byte.");
x = (byte) y;

16

System.out.println("y and x " + y + " " + x);
System.out.println("\\nConversion of double to int.");
y = (int) z;
System.out.println("z and y " + z + " " + y);
System.out.println("\\nConversion of double to byte.");
x = (byte) z;
System.out.println("z and x " + z + " " + x);

}
}

Output:
Conversion of int to byte.
y and x 257 1
Conversion of double to int.
z and y 323.142 323
Conversion of double to byte.
z and x 323.142 67

1.7 SUMMARY

The Java programming language uses both "fields" and
"variables" as part of its terminology. Instance variables (non-static
fields) are unique to each instance of a class. Class variables
(static fields) are fields declared with the static modifier; there is
exactly one copy of a class variable, regardless of how many times
the class has been instantiated. Local variables store temporary
state inside a method. Parameters are variables that provide extra
information to a method; both local variables and parameters are
always classified as "variables" (not "fields"). When naming your
fields or variables, there are rules and conventions that you should
(or must) follow.

The eight primitive data types are: byte, short, int, long, float,
double, boolean, and char. The java.lang.String class represents
character strings. The compiler will assign a reasonable default
value for fields of the above types; for local variables, a default
value is never assigned. A literal is the source code representation
of a fixed value. An array is a container object that holds a fixed
number of values of a single type. The length of an array is
established when the array is created. After creation, its length is
fixed.

1.8 UNIT END EXERCISE

1) Why is java known as platform-neutral language?
2) List at least five major differences between Java and C.

17

3) List at least five major C++ features that were intentionally
removed from Java.

4) Write a short note on Type Casting?
5) Explain with an example rules and conventions for naming

variables.

1.9 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

18

2

OPERATORS & CONTROLS

Unit Structure:

2.0 Objectives

2.1 Assignment, Arithmetic, and Unary Operators

2.2 Equality and Relational Operators

2.3 Bitwise and Bit Shift Operators

2.4 Expressions, Statements, and Blocks

2.5 Control Statements

2.6 Summary

2.7 Unit end exercise

2.8 Further Reading

2.0 OBJECTIVES

The objectives of this chapter are to learn the various types
of Operators, Control and Loop Statements. Here we will learn
relational, logical, conditional and bitwise operator and some more.
Also we will be covering the basic constructs of programming here:
Control statements

2.1 ASSIGNMENT, ARITHMETIC AND UNARY
OPERATORS

When you think of a computer program, you often think of
computations. Operators are the mechanism that allows programs
to perform computations on various values. There are three types
of operators. A unary operator acts on one operand; a binary
operator acts on two operands; and a ternary operator acts on
three operands. Operators tell Java to perform a task using one,
two, or three values. For example, consider this bit of code:

a = b + c;
This statement uses two operators. The + operator tells Java to add
variables b and c. The = operator puts the result into the a variable.

19

The Simple Assignment Operator

One of the most common operators that you'll encounter is
the simple assignment operator "=", it assigns the value on its right
to the operand on its left:

int bike= 0;
int rate = 0;
int interest = 1;
This operator can also be used on objects to assign object
references, as discussed in Creating Objects.

The Arithmetic Operators

The Java programming language provides operators that
perform addition, subtraction, multiplication, and division. The only
symbol that might look new to you is "%", which divides one
operand by another and returns the remainder as its result.

+ additive operator
- subtraction operator
* multiplication operator
/ division operator
% remainder operator

The following program, ArithmeticDemo, tests the arithmetic
operators.

class ArithmeticDemo {

public static void main (String[] args){

int result = 1 + 2; // result is now 3
System.out.println(result);

result = result - 1; // result is now 2
System.out.println(result);

result = result * 2; // result is now 4
System.out.println(result);

result = result / 2; // result is now 2
System.out.println(result);

result = result + 8; // result is now 10
result = result % 7; // result is now 3
System.out.println(result);

}
}

20

You can also combine the arithmetic operators with the
simple assignment operator to create compound assignments. For
example, x+=1; and x=x+1; both increment the value of x by 1. The
+ operator can also be used for concatenating (joining) two strings
together, as shown in the following ConcatDemo program:

class ConcatDemo {
public static void main(String[] args){

String fString = "This is";
String sString = " a concatenated string.";
String tString = fString+sString;
System.out.println(thirdString);

}
}
By the end of this program, the variable thirdString contains "This is
a concatenated string.", which gets printed to standard output.

The Unary Operators

The unary operators require only one operand; they perform
various operations such as incrementing/decrementing a value by
one, negating an expression, or inverting the value of a boolean.

+ Unary plus operator; indicates positive value
- Unary minus operator; negates an expression
++ Increment operator; increments a value by 1
-- Decrement operator; decrements a value by 1
! Logical complement operator; inverts the value of a boolean

The following program, UnaryDemo, tests the unary operators:
class UnaryDemo {

public static void main(String[] args){
int result = +1; // result is now 1
System.out.println(result);
result--; // result is now 0
System.out.println(result);
result++; // result is now 1
System.out.println(result);
result = -result; // result is now -1
System.out.println(result);
boolean success = false;
System.out.println(success); // false
System.out.println(!success); // true

}
}

The increment/decrement operators can be applied before
(prefix) or after (postfix) the operand. The code result++; and
++result; will both end in result being incremented by one. The only

21

difference is that the prefix version (++result) evaluates to the
incremented value, whereas the postfix version (result++) evaluates
to the original value. The following program, PrePostDemo,
illustrates the prefix/postfix unary increment operator:

class PrePostDemo {
public static void main(String[] args){

int i = 3;
i++;
System.out.println(i); // "4"
++i;
System.out.println(i); // "5"
System.out.println(++i); // "6"
System.out.println(i++); // "6"
System.out.println(i); // "7"

}
}

2.2 EQUALITY AND RELATIONAL OPERATORS

The equality and relational operators determine if one
operand is greater than, less than, equal to, or not equal to another
operand. The majority of these operators will probably look familiar
to you as well. Keep in mind that you must use "==", not "=", when
testing if two primitive values are equal.

== equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Relational operators are those that compare two values (for
example, == and < are relational operators). These operators
produce a true or false result. You could store these Boolean
values in a variable of type boolean. For example:

if (x==10) System.out.println("X is 10");

You can change the sense of any Boolean value (including a
relational operator) by using the unary ! operator. This operator
turns true into false and vice versa. So writing a<b is the same as
writing !(a>=b). You can also join relational operators by using the
&& or || operators (&& is a logical AND; || is a logical OR). One
point about these operators: These operators evaluate values from
left to right and stop processing as soon as the result is clear. A
common error is mixing up the equality operator (==) with an
assignment operator (=). The equality expression is a test returning

22

true or false . The assignment expression copies what is on the
right to the left.

Testing for Equality
How do you test for equality? For the primitive data types,

you use the == operator, like so:
int a = 1;
int b = 2;
int c = 1;
System.out.println(a==b); // returns false
System.out.println(a==c); // returns true

The char data type is treated as an integer internally, so it
also uses the == operator. Strings and objects are more
complicated. For example, if two different string variables contain
the same sequence of characters, we say they are lexicographically
equal. They hold equivalent strings, but these two string objects are
held in two separate memory locations.

The Conditional Operators

The && and || operators perform Conditional-AND and
Conditional-OR operations on two boolean expressions. These
operators exhibit "short-circuiting" behavior, which means that the
second operand is evaluated only if needed.

&& Conditional-AND
|| Conditional-OR

The following program, ConditionalDemo1, tests these operators:
class ConditionalDemo1 {

public static void main(String[] args){
int value1 = 1;
int value2 = 2;
if((value1 == 1) && (value2 == 2))

System.out.println("value1 is 1 AND value2 is 2");
if((value1 == 1) || (value2 == 1))

System.out.println("value1 is 1 OR value2 is 1");

}
}

Another conditional operator is ?:, which can be thought of
as shorthand for an if-then-else statement. This operator is also
known as the ternary operator because it uses three operands. In
the following example, this operator should be read as: "If
someCondition is true, assign the value of value1 to result.
Otherwise, assign the value of value2 to result."

23

The following program, ConditionalDemo2, tests the ?: operator:

class ConditionalDemo2 {

public static void main(String[] args){

int value1 = 1;

int value2 = 2;

int result;

boolean someCondition = true;

result = someCondition ? value1 : value2;

System.out.println(result);

}

}

Because someCondition is true, this program prints "1" to
the screen. Use the ?: operator instead of an if-then-else statement
if it makes your code more readable.

2.3 BITWISE AND BIT SHIFT OPERATORS

The Java programming language also provides operators
that perform bitwise and bit shift operations on integral types.
These operators are less commonly used. Therefore, their
coverage is brief; the intent is to simply make you aware that these
operators exist.

The unary bitwise complement operator "~" inverts a bit
pattern; it can be applied to any of the integral types, making every
"0" a "1" and every "1" a "0". For example, a byte contains 8 bits;
applying this operator to a value whose bit pattern is "00000000"
would change its pattern to "11111111".

The signed left shift operator "<<" shifts a bit pattern to the
left, and the signed right shift operator ">>" shifts a bit pattern to the
right. The bit pattern is given by the left-hand operand, and the
number of positions to shift by the right-hand operand. The
unsigned right shift operator ">>>" shifts a zero into the leftmost
position, while the leftmost position after ">>" depends on sign
extension.

The bitwise & operator performs a bitwise AND operation.
The bitwise ^ operator performs a bitwise exclusive OR operation.
The bitwise | operator performs a bitwise inclusive OR operation.
The following program, BitDemo, uses the bitwise AND operator to
print the number "2" to standard output.

24

class BitDemo {

public static void main(String[] args) {

int bitmask = 0x000F;

int val = 0x2222;

System.out.println(val & bitmask); // prints "2"

}

}

Check Your Progress
1) The ______ operators require only one operand.

2) The unary bitwise complement operator ______ inverts a bit
pattern

2.4 EXPRESSIONS, STATEMENTS AND BLOCKS

Expressions

An expression is a construct made up of variables,
operators, and method invocations, which are constructed
according to the syntax of the language, that evaluates to a single
value. You've already seen examples of expressions:

int value = 0;
anArray[0] = 100;
System.out.println("Element 1 at index 0: " + anArray[0]);
int result = 1 + 2; // result is now 3
if(value1 == value2) System.out.println("value1 == value2");

The data type of the value returned by an expression
depends on the elements used in the expression. The expression
value=0 returns an int because the assignment operator returns a
value of the same data type as its left-hand operand; in this case,
value is an int. As you can see from the other expressions, an
expression can return other types of values as well, such as
boolean or String.

The Java programming language allows you to construct
compound expressions from various smaller expressions as long
as the data type required by one part of the expression matches the
data type of the other. Here's an example of a compound
expression:

1 * 2 * 3
In this particular example, the order in which the expression

is evaluated is unimportant because the result of multiplication is
independent of order; the outcome is always the same, no matter in
which order you apply the multiplications. However, this is not true
of all expressions. For example, the following expression gives

25

different results, depending on whether you perform the addition or
the division operation first:

x + y / 100 // ambiguous

You can specify exactly how an expression will be evaluated
using balanced parenthesis: (and). For example, to make the
previous expression unambiguous, you could write the following:

(x + y) / 100 // unambiguous, recommended

When writing compound expressions, be explicit and
indicate with parentheses which operators should be evaluated
first. This practice makes code easier to read and to maintain.

Statements

Statements are roughly equivalent to sentences in natural
languages. A statement forms a complete unit of execution. The
following types of expressions can be made into a statement by
terminating the expression with a semicolon (;).
 Assignment expressions
 Any use of ++ or --
 Method invocations
 Object creation expressions

Such statements are called expression statements. Here are
some examples of expression statements.
aValue = 8933.234; // assignment statement
aValue++; // increment statement
System.out.println("Hello World!"); // method invocation statement
Bicycle myBike = new Bicycle(); // object creation statement

In addition to expression statements, there are two other
kinds of statements: declaration statements and control flow
statements. A declaration statement declares a variable. You've
seen many examples of declaration statements already:

double aValue = 8933.234; //declaration statement

Finally, control flow statements regulate the order in which
statements get executed. You'll learn about control flow statements
in the next section, Control Flow Statements

Blocks

A block is a group of zero or more statements between
balanced braces and can be used anywhere a single statement is
allowed. The following example, BlockDemo, illustrates the use of
blocks:

26

class BlockDemo {

public static void main(String[] args) {

boolean condition = true;

if (condition) { // begin block 1

System.out.println("Condition is true.");

} // end block one

else { // begin block 2

System.out.println("Condition is false.");

} // end block 2

}

}

2.5 CONTROL STATEMENTS

A programming language uses control statements to cause
the flow of execution to advance and branch based on changes to
the state of a program. Selection statements allow your program to
choose different paths of execution based upon the outcome of an
expression or the state of a variable.

The statements are generally executed from top to bottom,
in the order that they appear. Control flow statements break up the
flow of execution by employing decision making, looping, and
branching, enabling your program to conditionally execute
particular blocks of code. This section describes the decision-
making statements (if-then, if-then-else, switch), and in the next
chapter you will learn the looping statements (for, while, do-while),
and the branching statements (break, continue, return).

The if-then Statement

The if-then statement is the most basic of all the control flow
statements. It tells your program to execute a certain section of
code only if a particular test evaluates to true. For example, the
MotorBike class could allow the brakes to decrease the bike's
speed only if the bike is already in motion. One possible
implementation of the applyBrakes method could be as follows:
void applyBrakes(){

if (isMoving){ // the "if" clause: bike must be moving
currentSpeed--; // the "then" clause: decrease current speed

}
}

If this test evaluates to false (meaning that the bike is not in
motion), control jumps to the end of the if-then statement. In
addition, the opening and closing braces are optional, provided that
the "then" clause contains only one statement:

27

void applyBrakes(){
if (isMoving) currentSpeed--; // same as above, but w/o braces

}

Deciding when to omit the braces is a matter of personal
choice. Omitting them can make the code more brittle. If a second
statement is later added to the "then" clause, a common mistake
would be forgetting to add the newly required braces. The compiler
cannot catch this sort of error; you'll just get the wrong results.

The if-then-else Statement

The if-then-else statement provides a secondary path of
execution when an "if" clause evaluates to false. You could use an
if-then-else statement in the applyBrakes method to take some
action if the brakes are applied when the bike is not in motion. In
this case, the action is to simply print an error message stating that
the bike has already stopped.
void applyBrakes(){

if (isMoving) {
currentSpeed--;

} else {
System.err.println("The bike has already stopped!");

}
}

The following program assigns a grade based on the value
of a test score: an A for a score of 75% or above, a B for a score of
60% or
above, and so on.

class IfElseDemo {
public static void main(String[] args) {

int testscore = 76;
char grade;
if (testscore >= 75) {

grade = 'A';
} else if (testscore >= 60) {

grade = 'B';
} else if (testscore >= 45) {

grade = 'C';
} else if (testscore >= 35) {

grade = 'D';
} else {

grade = 'F';
}
System.out.println("Grade = " + grade);

}
}

28

The output from the program is:
Grade = A

You may have noticed that the value of testscore can satisfy more
than one expression in the compound statement: 76 >= 75 and 76
>= 60. However, once a condition is satisfied, the appropriate
statements are executed (grade = 'A';) and the remaining conditions
are not evaluated.

The switch Statement

The switch statement allows for any number of possible
execution paths. A switch works with the byte, short, char, and int
primitive data types. The following program, SwitchDemo, declares
an int named month whose value represents a month out of the
year. The program displays the name of the month, based on the
value of month, using the switch statement.

class SwitchDemo {
public static void main(String[] args) {

int month = 9;
switch (month) {

case 1: System.out.println("Jan"); break;
case 2: System.out.println("Feb"); break;
case 3: System.out.println("Mar"); break;
case 4: System.out.println("Apr"); break;
case 5: System.out.println("May"); break;
case 6: System.out.println("Jun"); break;
case 7: System.out.println("Jul"); break;
case 8: System.out.println("Aug"); break;
case 9: System.out.println("Sep"); break;
case 10: System.out.println("Oct"); break;
case 11: System.out.println("Nov"); break;
case 12: System.out.println("Dec"); break;
default: System.out.println("Invalid month.");break;

}
}

}
In this case, "Sep" is printed to standard output.

The body of a switch statement is known as a switch block.
Any statement immediately contained by the switch block may be
labeled with one or more case or default labels. The switch
statement evaluates its expression and executes the appropriate
case. Of course, you could also implement the same thing with if-
then-else statements:

29

int month = 8;
if (month == 1) {

System.out.println("Jan");
} else if (month == 2) {

System.out.println("Feb");
}
. . . // and so on

Deciding whether to use if-then-else statements or a switch
statement is sometimes a judgment call. You can decide which one
to use based on readability and other factors. An if-then-else
statement can be used to make decisions based on ranges of
values or conditions, whereas a switch statement can make
decisions based only on a single integer or enumerated value.

Another point of interest is the break statement after each
case. Each break statement terminates the enclosing switch
statement. Control flow continues with the first statement following
the switch block. The break statements are necessary because
without them, case statements fall through; that is, without an
explicit break, control will flow sequentially through subsequent
case statements. The default section handles all values that aren't
explicitly handled by one of the case sections.

There are three important features of the switch statement to note:
 The switch differs from the if in that switch can only test for

equality, whereas if can evaluate any type of Boolean
expression. That is, the switch looks only for a match between
the value of the expression and one of its case constants.

 No two case constants in the same switch can have identical
values. Of course, a switch statement enclosed by an outer
switch can have case constants in common.

 A switch statement is usually more efficient than a set of nested
ifs.

Check Your Progress
1) A statement forms a complete unit of execution. (True/False)

2) The statements are generally executed from bottom to top.
(True/False)

2.6 SUMMARY

The following operators are supported by the Java
programming language: Simple Assignment Operator, Arithmetic
Operators, Unary Operators, Equality and Relational Operators,
Conditional Operators, Type Comparison Operator.

30

The if-then statement is the most basic of all the control flow
statements. It tells your program to execute a certain section of
code only if a particular test evaluates to true. The if-then-else
statement provides a secondary path of execution when an "if"
clause evaluates to false. Unlike if-then and if-then-else, the switch
statement allows for any number of possible execution paths.

2.7 UNIT END EXERCISE

1) Explain the Unary operators in Java.
2) List all the relational and conditional operators and explain with

an example.
3) Write a short note on Bitwise operators.
4) In what ways does a switch statement differs from an if

statement?
5) Write a program to find the number of and sum of all integers

greater than 50 and less than 100 that are divisible by 5.

2.8 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &

Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

31

3

LOOPS, ARRAYS & STRINGS

Unit Structure:

3.0 Objectives

3.1 The while and do-while Statements

3.2 The for Statement

3.3 Branching Statements

3.4 Arrays

3.5 Strings

3.6 Summary

3.7 Unit end exercise

3.8 Further Reading

3.0 OBJECTIVES

The objectives of this chapter are to learn the various loop
statements and how to use arrays and String objects. Here we will
get to know the importance of arrays and get introduced to the
various string classes from the Java API.

3.1 THE WHILE AND DO-WHILE STATEMENTS

The while Statement

The while statement continually executes a block of
statements while a particular condition is true. Its syntax can be
expressed as:
while(expression) {

statement(s)
}

The while statement evaluates expression, which must
return a boolean value. If the expression evaluates to true, the
while statement executes the statement(s) in the while block. The
while statement continues testing the expression and executing its
block until the expression evaluates to false. Using the while
statement to print the values from 100 through 110 can be
accomplished as in the following WhileDemo program:

32

class WhileDemo {
public static void main(String[] args){

int count = 100;
while (count < 111) {

System.out.println("Count is: " + count);
count++;

}
}

}

Since the while loop evaluates its conditional expression at
the top of the loop, the body of the loop will not execute even once
if the condition is false to begin with.

The do-while statement

Sometimes it is desirable to execute the body of a while loop
at least once, even if the conditional expression is false to begin
with. In other words, there are times when you would like to test the
termination expression at the end of the loop rather than at the
beginning. Java supplies a loop that does just that: the do-while.
The do-while loop always executes its body at least once, because
its conditional expression is at the bottom of the loop. Its general
form is
do {
// body of loop
} while (condition);

Each iteration of the do-while loop first executes the body of
the loop and then evaluates the conditional expression. If this
expression is true, the loop will repeat. Otherwise, the loop
terminates. The condition must be a Boolean expression. Here is a
program that demonstrates the do-while loop.
// Demonstrate the do-while loop.
class DoWhile {
public static void main(String args[]) {
int n = 10;
do {
System.out.println(n);
n--;
} while(n > 0);
}
}

The do-while loop is especially useful when you process a
menu selection, because you will usually want the body of a menu
loop to execute at least once.

33

3.2 THE FOR STATEMENTS

You should use the for statement when you have a definite
number of times you want to execute a loop. This statement
includes three sections: initialization, condition, and update. A for
statement should have the following form:
for(initialization; condition; update)
{

statements;
}

When Java first encounters a for statement, it executes the
initialization clause. This can set an initial value for a loop variable
(i=0, for example), or you can declare a unique variable for the loop
and initialize it (int i=0). If you declare a variable here, its scope is
just the body of the loop.

The next step is to evaluate the condition expression. If the
condition is false, the loop does not execute. Java repeats this test
when the loop repeats. If the body of the loop executes, the update
clause evaluates at the end of the block, and then Java tries the
condition expression again. If the condition is true, the block
repeats. If the expression is false, the loop is over; Java skips the
block and continues execution. This loop will print the numbers 1 to
10 on the console:
for (int i=1; i<=10; i++)
{

System.o ut.println(i);
}

When the loop control variable will not be needed elsewhere,
most programmers declare it inside the for. For example, here is a
simple program that tests for prime numbers. Notice that the loop
control variable, i, is declared inside the for since it is not needed
elsewhere.
// Test for primes.
class FindPrime {
public static void main(String args[])
{

int n;
boolean flag = true;
n = 53;
for(int i=2; i < n/2; i++)
{

if((n % i) == 0)
{

flag = false;
break;

}

34

}
if(flag)

System.out.println(n + " is Prime");
else

System.out.println(n + " is Not Prime");
}
}

Check Your Progress
1) The while statement evaluates expression, which must return a
_____ value.

2) Each iteration of the ________ loop first executes the body of
the loop and then evaluates the conditional expression.

3.3 BRANCHING STATEMENTS

The break Statement

The break statement has two forms: labeled and unlabeled.
You saw the unlabeled form in the previous discussion of the switch
statement. You can also use an unlabeled break to terminate a for,
while, or do-while loop, as shown in the following

BreakDemo program:

class BreakDemo {

public static void main(String[] args) {

int[] array = { 23, 78, 30, 987, 17, 761,500, 172 };

int searchfor = 17;

int i;

boolean flag = false;

for (i = 0; i < array.length; i++) {

if (arrayOfInts[i] == searchfor) {

flag = true;

break;

}

}

if (flag) {

System.out.println("Found " + searchfor

+ " at index " + i);

35

} else {

System.out.println(searchfor

+ " not in the array");

}

}

}

This program searches for the number 12 in an array. The
break statement terminates the for loop when that value is found.
Control flow then transfers to the print statement at the end of the
program. This program's output is:

Found 12 at index 4

An unlabeled break statement terminates the innermost
switch, for, while, or do-while statement, but a labeled break
terminates an outer statement. The following program,
BreakWithLabelDemo, is similar to the previous program, but uses
nested for loops to search for a value in a two-dimensional array.
When the value is found, a labeled break terminates the outer for
loop (labeled "search"):

class BreakWithLabelDemo {
public static void main(String[] args) {

int[][] arrayOfInts = { { 32, 87, 3, 589 },
{ 12, 1076, 2000, 8 },
{ 622, 127, 77, 955 }

};
int searchfor = 12;

int i;
int j = 0;
boolean foundIt = false;

search:
for (i = 0; i < arrayOfInts.length; i++) {

for (j = 0; j < arrayOfInts[i].length; j++) {
if (arrayOfInts[i][j] == searchfor) {

foundIt = true;
break search;

}
}

}

if (foundIt) {
System.out.println("Found " + searchfor +

" at " + i + ", " + j);
} else {

36

System.out.println(searchfor
+ " not in the array");

}
}

}

This is the output of the program.

Found 12 at 1, 0

The break statement terminates the labeled statement; it
does not transfer the flow of control to the label. Control flow is
transferred to the statement immediately following the labeled
(terminated) statement.

The continue Statement

The continue statement skips the current iteration of a for,
while, or do-while loop. The unlabeled form skips to the end of the
innermost loop's body and evaluates the boolean expression that
controls the loop. The following program, ContinueDemo, steps
through a String, counting the occurrences of the letter "p". If the
current character is not a p, the continue statement skips the rest of
the loop and proceeds to the next character. If it is a "p", the
program increments the letter count.
class ContinueDemo {

public static void main(String[] args) {

String searchMe =
"peter piper picked a peck of pickled peppers";

int max = searchMe.length();
int numPs = 0;

for (int i = 0; i < max; i++) {
//interested only in p's
if (searchMe.charAt(i) != 'p')

continue;

//process p's
numPs++;

}
System.out.println("Found " + numPs + " p's in the string.");

}
}
Here is the output of this program:
Found 9 p's in the string.

37

To see this effect more clearly, try removing the continue
statement and recompiling. When you run the program again, the
count will be wrong, saying that it found 35 p's instead of 9.

A labeled continue statement skips the current iteration of an
outer loop marked with the given label. The following example
program, ContinueWithLabelDemo, uses nested loops to search for
a substring within another string. Two nested loops are required:
one to iterate over the substring and one to iterate over the string
being searched. The following program, ContinueWithLabelDemo,
uses the labeled form of continue to skip an iteration in the outer
loop.

class ContinueWithLabelDemo {
public static void main(String[] args) {

String searchMe = "Look for a substring in me";
String substring = "sub";
boolean foundIt = false;

int max = searchMe.length() - substring.length();

test:
for (int i = 0; i <= max; i++) {

int n = substring.length();
int j = i;
int k = 0;
while (n-- != 0) {

if (searchMe.charAt(j++)
!= substring.charAt(k++)) {

continue test;
}

}
foundIt = true;

break test;
}
System.out.println(foundIt ? "Found it" :

"Didn't find it");
}

}
Here is the output from this program.

Found it

The return Statement

The last of the branching statements is the return statement.
The return statement exits from the current method, and control
flow returns to where the method was invoked. The return
statement has two forms: one that returns a value, and one that

38

doesn't. To return a value, simply put the value (or an expression
that calculates the value) after the return keyword.

return ++count;

The data type of the returned value must match the type of
the method's declared return value. When a method is declared
void, use the form of return that doesn't return a value. return;

Check Your Progress
1) The break statement has one form. (True/False)

2) The data type of the returned value must match the type of the
method's declared return value. (True/False)

3.4 ARRAYS

An array is a structure that holds multiple values of
the same type. An array is a group of like-typed variables that are
referred to by a common name. Arrays of any type can be created
and may have one or more dimensions. A specific element in an
array is accessed by its index. Arrays offer a convenient means of
grouping related information.

In Java, arrays are really a form of object. You use the
square brackets to indicate an array variable. In the following
example, the array has 10 elements ranging from
anArrayofIntegers[0] to anArrayofIntegers[9]. For example:
int anArrayOfIntegers[10]; // create an array

Creating, Initializing, and Accessing an Array
One way to create an array is with the new operator. The

next statement in the ArrayDemo program allocates an array with
enough memory for ten integer elements and assigns the array to
the anArray variable.

class ArrayDemo {

public static void main(String[] args) {

int[] anArray; // declares an array of integers

anArray = new int[5];// allocates memory for 5 integers

anArray[0] = 500; // initialize first element

anArray[1] = 400; // initialize second element

anArray[2] = 300; // etc.

anArray[3] = 200;

anArray[4] = 100;

39

System.out.println("Element at index 0: " + anArray[0]);

System.out.println("Element at index 1: " + anArray[1]);

System.out.println("Element at index 2: " + anArray[2]);

System.out.println("Element at index 3: " + anArray[3]);

System.out.println("Element at index 4: " + anArray[4]);

}

}
anArray = new int[5]; // create an array of integers

If this statement were missing, the compiler would print an
error like the following, and compilation would fail:
ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the
array:
anArray[0] = 100; // initialize first element
anArray[1] = 200; // initialize second element
anArray[2] = 300; // etc.
Each array element is accessed by its numerical index:
System.out.println("Element 1 at index 0: " + anArray[0]);
System.out.println("Element 2 at index 1: " + anArray[1]);

Alternatively, you can use the shortcut syntax to create and
initialize an array: int[] anArray = {100, 200, 300, 400, 500};
Here the length of the array is determined by the number of values
provided between { and }. You can also declare an array of arrays
(also known as a multidimensional array) by using two or more sets
of square brackets, such as String[][] names. Each element,
therefore, must be accessed by a corresponding number of index
values.

In the Java programming language, a multidimensional array
is simply an array whose components are themselves arrays. A
consequence of this is that the rows are allowed to vary in length,
as shown in the following MultiDimArrayDemo program:

class MultiDimArrayDemo {

public static void main(String[] args) {

String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},

{"Sachin", "Tendulkar"}};

System.out.println(names[0][0] + names[1][0]);

System.out.println(names[0][2] + names[1][1]);

}

}

The output from this program is:

Mr. Sachin

40

Ms. Tendulkar

Finally, you can use the built-in length property to determine the
size of any array. The code

System.out.println(anArray.length);

will print the array's size to standard output.

3.5 STRINGS

Strings, which are widely used in Java programming, are a
sequence of characters. In the Java programming language, strings
are objects. The Java platform provides the String class to create
and manipulate strings.

Creating Strings

The most direct way to create a string is to write:
String str= "Hello";
In this case, "Hello" is a string literal—a series of characters in your
code that is enclosed in double quotes. Whenever it encounters a
string literal in your code, the compiler creates a String object with
its value—in this case, Hello. As with any other object, you can
create String objects by using the new keyword and a constructor.
The String class has thirteen constructors that allow you to provide
the initial value of the string using different sources, such as an
array of characters:

char[] helloArray = { 'H', 'e', 'l', 'l', 'o', '.'};
String helloString = new String(helloArray);
System.out.println(helloString);
The last line of this code snippet displays Hello.

Note: The String class is immutable, so that once it is created a
String object cannot be changed. The String class has a number of
methods that appear to modify strings. Since strings are immutable,
what these methods really do is create and return a new string that
contains the result of the operation.

String Length

Methods used to obtain information about an object are
known as accessor methods. One accessor method that you can
use with strings is the length() method, which returns the number of
characters contained in the string object. After the following two
lines of code have been executed, len equals 17:

String palindrome = "Dot saw I was Tod";
int len = palindrome.length();

A palindrome is a word or sentence that is symmetric—it is
spelled the same forward and backward, ignoring case and

41

punctuation. Here is a short and inefficient program to reverse a
palindrome string. It invokes the String method charAt(i), which
returns the ith character in the string, counting from 0.

public class StringDemo {

public static void main(String[] args) {

String palindrome = "Dot saw I was Tod";

int len = palindrome.length();

char[] tempCharArray = new char[len];

char[] charArray = new char[len];

// put original string in an array of chars

for (int i = 0; i < len; i++) {

tempCharArray[i] = palindrome.charAt(i);

}

// reverse array of chars

for (int j = 0; j < len; j++) {

charArray[j] = tempCharArray[len - 1 - j];

}

String reversePalindrome = new String(charArray);

System.out.println(reversePalindrome);

}

}

Running the program produces this output:

doT saw I was toD

To accomplish the string reversal, the program had to
convert the string to an array of characters (first for loop), reverse
the array into a second array (second for loop), and then convert
back to a string. The String class includes a method, getChars(), to
convert a string, or a portion of a string, into an array of characters
so we could replace the first for loop in the program above with
palindrome.getChars(0, len, tempCharArray,0);

Concatenating Strings

The String class includes a method for concatenating two
strings:

string1.concat(string2);

This returns a new string that is string1 with string2 added to it at
the end. You can also use the concat() method with string literals,
as in:

"My name is ".concat("Rumplestiltskin");

Strings are more commonly concatenated with the + operator, as in

42

"Hello," + " world" + "!"

which results in

"Hello, world!"

The + operator is widely used in print statements. For example:

String string1 = "saw I was ";

System.out.println("Dot " + string1 + "Tod");

which prints

Dot saw I was Tod

Such a concatenation can be a mixture of any objects. For each
object that is not a String, its toString() method is called to convert it
to a String.

Creating Format Strings

You have seen the use of the printf() and format() methods
to print output with formatted numbers. The String class has an
equivalent class method, format(), that returns a String object rather
than a PrintStream object. Using String's static format() method
allows you to create a formatted string that you can reuse, as
opposed to a one-time print statement. For example, instead of

System.out.printf("The value of the float variable is %f, while
the value of the " + "integer variable is %d, and the string is
%s", floatVar, intVar, stringVar);

you can write

String fs;
fs = String.format("The value of the float variable is %f, while
the value of the " + "integer variable is %d, and the string is
%s", floatVar, intVar, stringVar);
System.out.println(fs);

Check Your Progress
1) The Java platform provides the ______ class to create and
manipulate strings.

2) Using String's static _______ method allows you to create a
formatted string that you can reuse.

3.6 SUMMARY

The while and do-while statements continually execute a
block of statements while a particular condition is true. The
difference between do-while and while is that do-while evaluates its
expression at the bottom of the loop instead of the top. Therefore,

43

the statements within the do block are always executed at least
once. The for statement provides a compact way to iterate over a
range of values. It has two forms, one of which was designed for
looping through collections and arrays.

The String class has many methods to find and retrieve
substrings; these can then be easily reassembled into new strings
using the + concatenation operator. The String class also includes
a number of utility methods, among them split(), toLowerCase(),
toUpperCase(), and valueOf(). The latter method is indispensable
in converting user input strings to numbers. The Number
subclasses also have methods for converting strings to numbers
and vice versa.

In addition to the String class, there is also a StringBuilder
class. Working with StringBuilder objects can sometimes be more
efficient than working with strings. The StringBuilder class offers a
few methods that can be useful for strings, among them reverse().
In general, however, the String class has a wider variety of
methods.

A string can be converted to a string builder using a
StringBuilder constructor. A string builder can be converted to a
string with the toString() method.

3.7 UNIT END EXERCISE

1) Explain the difference between while and do..while loop.
2) With the help of an example explain the syntax of for loop.
3) Write short note on Branching Statements on Java?
4) Write a program which will accept five random numbers and

strore them in an array, display the addition of numbers.
5) Write short note on String class?

3.8 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

44

4

INTRODUCTION TO CLASSES

Unit Structure:

4.0 Objectives

4.1 Defining a class

4.2 Creating Objects

4.3 Constructors

4.4 Method Overloading

4.5 Static Members

4.6 Visibility Control

4.7 Summary

4.8 Unit end exercise

4.9 Further Reading

4.0 OBJECTIVES

The objectives of this chapter are to learn how to define a
class and create objects of the class. Here we will also learn how
constructor can be used to initialize an object and how Java
implements polymorphism through method overloading. At the end
of the chapter we will discuss static members of a class and
visibility control.

4.1 DEFINING A CLASS

Although primitive data types and control structures
comprise the details of Java programming, classes form the
backbone of all Java programs. The class is at the core of Java. It
is the logical construct upon which the entire Java language is built
because it defines the shape and nature of an object. As such, the
class forms the basis for object-oriented programming in Java. Any
concept you wish to implement in a Java program must be
encapsulated within a class

When you define a class, you declare its exact form and
nature. You do this by specifying the data that it contains and the
code that operates on that data. While very simple classes may
contain only code or only data, most real-world classes contain
both. In Java, everything you write (except import and package

45

statements) will reside inside a class. A class provides a pattern
that you can use to create one or more objects. The basic form of a
class definition is:

class MyClass [extends MySuperClass] [implements MyInterface]
{

[fields declaration]
[methods declaration]

}

means that MyClass is a subclass of MySuperClass and that it
implements the MyInterface interface.

This is a class declaration. The class body (the area
between the braces) contains all the code that provides for the life
cycle of the objects created from the class: constructors for
initializing new objects, declarations for the fields that provide the
state of the class and its objects, and methods to implement the
behavior of the class and its objects.

The data, or variables, defined within a class are called
instance variables. The code is contained within methods.
Collectively, the methods and variables defined within a class are
called members of the class. In most classes, the instance
variables are acted upon and accessed by the methods defined for
that class. Thus, it is the methods that determine how a class' data
can be used.

In general, class declarations can include these components, in
order:
 Modifiers such as public, private, and a number of others that

you will encounter later.
 The class name, with the initial letter capitalized by convention.
 The name of the class's parent (superclass), if any, preceded by

the keyword extends. A class can only extend (subclass) one
parent.

 A comma-separated list of interfaces implemented by the class,
if any, preceded by the keyword implements. A class can
implement more than one interface.

 The class body, surrounded by braces, {}.

4.2 CREATING OBJECTS

Fields Declaration
Field declarations are composed of three components, in order:
 Zero or more modifiers, such as public or private.
 The field's type.
 The field's name.

46

In the example below fields of Rect class are named length and
breadth and are all of data type integer (int). The public keyword
identifies these fields as public members, accessible by any object
that can access the class.

class Rect
{

public int length;
public int breadth;

}

There are several kinds of variables:
 Member variables in a class—these are called fields.
 Variables in a method or block of code—these are called local

variables.
 Variables in method declarations—these are called parameters.

Method Declaration

A class should have methods that are necessary for
manipulating the data contained in the class. Immediately after the
declaration of instance variables inside the body of the class
methods are declared. The general form of a method declaration is:

modifiers type method_name(parameter-list)
{

Method-body;
}

More generally, method declarations have six components,
in order:

 Modifiers—such as public, private, and others you will learn
about later in this chapter.

 The return type—the data type of the value returned by the
method, or void if the method does not return a value.

 The method name—the rules for field names apply to method
names as well, but the convention is a little different.

 The parameter list in parenthesis—a comma-delimited list of
input parameters, preceded by their data types, enclosed by
parentheses, (). If there are no parameters, you must use empty
parentheses.

 An exception list—to be discussed later.

 The method body, enclosed between braces—the method's
code, including the declaration of local variables, goes here.

47

Example:
class Rect
{

public int length;
public int breadth;

void getValues(int p,int q)
{

length=p;
breadth=q;

}
int area()
{

int ans=length*breadth;
return (ans);

}
}

Program Explanation:

The method getValues() has a return type of void because it
does not return any values. Two integer values are passed which
are then assigned to the instance variables length and breadth.
This method is added to provide values to the class instance
variables.

The method area() computes the area of a rectangle and
returns the result with the ‘return’ keyword. Note that the
parameter list is empty. Since the result would be an integer the
return type of the method is specified as int.

Creating Objects

A typical Java program creates many objects, which as you
know, interact by invoking methods. Through these object
interactions, a program can carry out various tasks, such as
implementing a GUI, running an animation, or sending and
receiving information over a network. Once an object has
completed the work for which it was created, its resources are
recycled for use by other objects. A class provides the blueprint for
objects; you create an object from a class. Each of the following
statements creates an object.

Rect rectOne = new Rect();
Rect rectTwo = new Rect();

Each of the above statements has three parts (discussed in detail
below):

48

 Declaration: The code set in bold are all variable declarations
that associate a variable name with an object type.

 Instantiation: The new keyword is a Java operator that creates
the object.

 Initialization: The new operator is followed by a call to a
constructor, which initializes the new object.

1) Declaring a Variable to Refer to an Object:

Previously, you learned that to declare a variable, you write:
type name;
e.g. int value;

This notifies the compiler that you will use value to refer to
data whose type is int. With a primitive variable, this declaration
also reserves the proper amount of memory for the variable. You
can also declare a reference variable on its own line. For example:

Rect rectTwo;

If you declare rectTwo like this, its value will be
undetermined until an object is actually created and assigned to it.
Simply declaring a reference variable does not create an object.
For that, you need to use the new operator. You must assign an
object to rectTwo before you use it in your code. Otherwise, you will
get a compiler error.

2) Instantiating a Class:

The new operator instantiates a class by allocating memory
for a new object and returning a reference to that memory. The
phrase "instantiating a class" means the same thing as "creating an
object." When you create an object, you are creating an "instance"
of a class, therefore "instantiating" a class.

The new operator returns a reference to the object it created.
This reference is usually assigned to a variable of the appropriate
type, like:

Rect rectTwo = new Rect(); way

3) Initializing an Object:

After we have created an object of the class, we can initialize
the object in two ways. We can use the “.” dot operator to provide
values to the instance variables. Also we can call some method of
the class which will help us in setting the values of the object
variables.

49

E.g. Rect rectTwo=new Rect();
rectTwo.length=10;rectTwo.breadth=20;

or
rectTwo.setData(10,20);

Using Objects

Once you've created an object, you probably want to use it
for something. You may need to use the value of one of its fields,
change one of its fields, or call one of its methods to perform an
action.

1) Referencing an Object's Fields

Object fields are accessed by their name. You must use a name
that is unambiguous. You may use a simple name for a field within
its own class. For example, we can add a statement within the Rect
class that prints the length and breadth:

System.out.println("Length and breadth are: "
+ length + ", " + breadth);

In this case, length and breadth are simple names. Code that is
outside the object's class must use an object reference or
expression, followed by the dot (.) operator, followed by a simple
field name, as in:

objectReference.fieldName

For example, the code in the Rect class, we can refer to the length
and breadth fields within the Rect object named rectOne, the class
must use the names rectOne.length and rectOne.breadth,
respectively. The program uses two of these names to display the
length and the breadth of rectOne:

System.out.println("Lenght of rectOne: " + rectOne.length);
System.out.println("Breadth of rectOne: " + rectOne.breadth);

2) Calling an Object's Methods

You also use an object reference to invoke an object's
method. You append the method's name to the object reference,
with an dot operator (.). Also, you provide, within enclosing
parentheses, any arguments to the method. If the method does not
require any arguments, use empty parentheses.

objectReference.methodName(argumentList);
or

objectReference.methodName();

50

The Rect class has a method: area() to compute the
rectangle's area. Here's the code that invokes this method:

System.out.println("Area of rectOne: " + rectOne.area());

Some methods, such as area(), return a value. For methods
that return a value, you can use the method invocation in
expressions. You can assign the return value to a variable, use it to
make decisions, or control a loop. This code assigns the value
returned by area() to the variable areaOfRectangle:

int areaOfRectangle = rectOne.area();

3) The Garbage Collector

Managing memory explicitly is tedious and error-prone. The
Java platform allows you to create as many objects as you want,
and you don't have to worry about destroying them. The Java
runtime environment deletes objects when it determines that they
are no longer being used. This process is called garbage collection.

An object is eligible for garbage collection when there are no
more references to that object. References that are held in a
variable are usually dropped when the variable goes out of scope.
Remember that a program can have multiple references to the
same object; all references to an object must be dropped before the
object is eligible for garbage collection.

The Java runtime environment has a garbage collector that
periodically frees the memory used by objects that are no longer
referenced. The garbage collector does its job automatically when it
determines that the time is right.

Check Your Progress
1) In Java, everything you write will reside inside a _______

2) A class should have _____________ that are necessary for
manipulating the data contained in the class.

4.3 CONSTRUCTORS

Until now we have seen three ways to initialize values to the
variables declared in the class. First of all we can assign default
values to the variables when we declare them in the class

E.g. int p=10,q=20.

Another way to provide values to the instance variables is
after the object is created in the main() method.

E.g. Rect rectTwo=new Rect();

51

rectTwo.length=10;

rectTwo.breadth=20;

Last technique we have used is, to create a separate
method to set the data for the instance variable.

E.g. void setData(int x,int y){

length=x;

breadth=y;

}

....

....

Rect rectTwo=new Rect();

rectTwo.setData(10,20);

Each of the above three approach has its drawbacks, in the
first way we have to give new values while coding and dynamic
values cannot be passed to the class. In the second means if we
create more objects of a class then the lines of code would also
increase as per the number of instance variable. The last mode has
a drawback that the method has to be called explicitly each time we
need to initialize the object.

There is a better way on initializing an object and that is
through the use of constructor. A constructor initializes an object
immediately upon creation. It has the same name as the class and
is syntactically similar to a method. The constructor is automatically
called immediately after the object is created. Constructors have no
return type, not even void. It is the constructor's job to initialize the
internal state of an object so that the code creating an instance will
have a fully initialized, usable object immediately.

You cannot write two constructors that have the same
number and type of arguments for the same class, because the
platform would not be able to tell them apart. Doing so causes a
compile-time error. You don't have to provide any constructors for
your class, but you must be careful when doing this. The compiler
automatically provides a no-argument, default constructor for any
class without constructors. This default constructor will call the no-
argument constructor of the superclass. If your class has no explicit
superclass, then it has an implicit superclass of Object, which does
have a no-argument constructor.

E.g.
class Rect
{

int length,breadth;
Rect()
{

52

length=0; breadth=0;
}
Rect(int x, int y)
{

length=x; breadth=y;
}

}

In the above example, we have created two constructors,
one with no arguments and the second with two arguments. The
constructors can be used in the following manner:

E.g. Rect rectOne = new Rect(); //zero parameter
Rect rectTwo = new Rect(10,20); //Two parameters

The above two statements will call the no argument constructor and
two argument constructor respectively. The values of the instance
variable will be as follows:

rectOne.length=0; rectOne.breadth=0;
rectTwo.length=10; rectTwo.breadth=20;

The “this” keyword

The keyword this is useful when you need to refer to
instance of the class from its method. The keyword helps us to
avoid name conflicts. In the program we have declare the name of
instance variable and local variables same. Now to avoid the
confliction between them we use this keyword. In the example,
this.length and this.breadth refers to the instance variable length
and breadth while length and breadth refers to the arguments
passed in the method.

class Rect2{

int length,breadth;

void show(int length,int breadth){

this.length=length;

this.breadth=breadth;

}

int calculate(){

return(length*breadth);

}

}//class Rect2

public class UseOfThisOperator{

public static void main(String[] args){

Rect2 rectangle=new Rect2();

rectangle.show(5,6);

53

int area = rectangle.calculate();

System.out.println("The area of a
Rectangle is : " + area);

}//main

}//class UseOfThisOperator

4.4 METHOD OVERLOADING

It is possible to create methods that have the same name,
but different number of parameters and different types of
parameters. When this is the case, the methods are said to be
overloaded, and the process is referred to as method overloading.
Method overloading is one of the ways that Java implements
polymorphism. When an overloaded method is invoked, Java uses
the type and/or number of arguments as its guide to determine
which version of the overloaded method to actually call. When Java
encounters a call to an overloaded method, it simply executes the
version of the method whose parameters match the arguments
used in the call.

class OverloadDemo
{

void add(int x, int y) {
int sum=x+y;
System.out.println("Sum = "+sum");

}
void add(int x, int y, int z) {

int sum=x+y+z;
System.out.println("Sum = "+sum");

}
}//class OverloadDemo
class Overload {

public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();
ob.add(10,20);
ob.add(10,20,30);

}//main
}//class Overload

Here we are overloading the method add(). In the main
method there are two calls to the add() method. First call is with two
int values (10,20) so the first add() will be called and then the
second call has three int values (10,20,30) so the second add() will
be called.

54

Check Your Progress
1) A constructor initializes an object immediately upon creation.
(True/False)

2) Java does not allow two methods to have the same name.
(True/False)

4.5 STATIC MEMBERS

Sometime we want a class member to be independent of
any object of that class. Normally a class member must be
accessed only in conjunction with an object of its class. It is
possible to create a member that can be used by itself, without
reference to a specific instance.

To create such a member, precede its declaration with the
keyword static. When a member is declared static, it can be
accessed before any objects of its class are created, and without
reference to any object. You can declare both methods and
variables to be static. The most common example of a static
member is main(). main() is declared as static because it must be
called before any objects exist.

Instance variables declared as static are, essentially, global
variables. When objects of its class are declared, no copy of a
static variable is made. Instead, all instances of the class share the
same static variable. Methods declared as static have several
restrictions:
 They can only call other static methods.
 They must only access static data.
 They cannot refer to this or super in any way.

Outside of the class in which they are defined, static methods
and variables can be used independently of any object. To do so,
you need only specify the name of their class followed by the dot
operator. For example, if you wish to call a static method from
outside its class, you can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static
method is declared. As you can see, this format is similar to that
used to call non-static methods through object reference variables.
A static variable can be accessed in the same way—by use of the
dot operator on the name of the class. This is how Java implements
a controlled version of global functions and global variables.

55

class StaticDemo {

static int add(int x, int y) {

return x+y;

}

static int sub(int x, int y) {

return x-y;

}

}

class StaticByName {

public static void main(String args[]) {

int a=StaticDemo.add(45,5);

int b=StaticDemo.sub(50,25);

System.out.println("Sum = " +a);

System.out.println("Sub = " +b);

}

}

4.6 VISIBILITY CONTROL

Access level modifiers determine whether other classes can
use a particular field or invoke a particular method. There are two
levels of access control:
 At the top level—public, or package-private.
 At the member level—public, private, protected, or package-

private.

A class may be declared with the modifier public, in which case
that class is visible to all classes everywhere. If a class has no
modifier (the default, also known as package-private), it is visible
only within its own package (packages are named groups of related
classes—you will learn about them later.)

At the member level, you can also use the public modifier or no
modifier (package-private) just as with top-level classes, and with
the same meaning. For members, there are two additional access
modifiers: private and protected. The private modifier specifies that
the member can only be accessed in its own class. The protected
modifier specifies that the member can only be accessed within its
own package (as with package-private) and, in addition, by a
subclass of its class in another package. The following table shows
the access to members permitted by each modifier.

56

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

Access levels affect you in two ways. First, when you use
classes that come from another source, such as the classes in the
Java platform, access levels determine which members of those
classes your own classes can use. Second, when you write a class,
you need to decide what access level every member variable and
every method in your class should have.

Tips on Choosing an Access Level: If other programmers
use your class, you want to ensure that errors from misuse cannot
happen. Access levels can help you do this. Use the most
restrictive access level that makes sense for a particular member.
Use private unless you have a good reason not to. Avoid public
fields except for constants. Public fields tend to link you to a
particular implementation and limit your flexibility in changing your
code.

Check Your Progress
1) When a member is declared _______, it can be accessed before
any objects of its class are created

2) The ________ modifier specifies that the member can only be
accessed in its own class.

4.7 SUMMARY

A class declaration names the class and encloses the class
body between braces. The class name can be preceded by
modifiers. The class body contains fields, methods, and
constructors for the class. A class uses fields to contain state
information and uses methods to implement behavior. Constructors
that initialize a new instance of a class use the name of the class
and look like methods without a return type.

You control access to classes and members in the same
way: by using an access modifier such as public in their
declaration.

You specify a class variable or a class method by using the
static keyword in the member's declaration. A member that is not
declared as static is implicitly an instance member. Class variables
are shared by all instances of a class and can be accessed through

57

the class name as well as an instance reference. Instances of a
class get their own copy of each instance variable, which must be
accessed through an instance reference.

You create an object from a class by using the new operator
and a constructor. The new operator returns a reference to the
object that was created. You can assign the reference to a variable
or use it directly.

Instance variables and methods that are accessible to code
outside of the class that they are declared in can be referred to by
using a qualified name. The qualified name of an instance variable
looks like this:

objectReference.variableName

The qualified name of a method looks like this:
objectReference.methodName(argumentList)

or:
objectReference.methodName()

The garbage collector automatically cleans up unused
objects. An object is unused if the program holds no more
references to it. You can explicitly drop a reference by setting the
variable holding the reference to null.

4.8 UNIT END EXERCISE

1) What is a class? How does it accomplish data hiding?
2) How is a method defined?
3) How do we invoke a constructor?
4) Discuss the different levels of access protection available in

Java?
5) Design a class to represent a bank account.

4.9 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

58

5

INTERFACES & INHERITANCE

Unit Structure:

5.0 Objectives

5.1 Defining an Interface

5.2 Implementing an Interface

5.3 Types of inheritance

5.4 Method Overriding

5.5 Using Final

5.6 Abstract methods and classes

5.7 Summary

5.8 Unit end exercise

5.9 Further Reading

5.0 OBJECTIVES

The objectives of this chapter are to learn how to declare an
Interface and implement it. In addition to that we will be learning the
different types of Inheritance in Java and how they are
implemented.

5.1 DEFINING AN INTERFACE

In the Java programming language, an interface is a
reference type, similar to a class that can contain only constants,
method signatures, and nested types. There are no method bodies.
Interfaces cannot be instantiated—they can only be implemented
by classes or extended by other interfaces. That is, using interface,
you can specify what a class must do, but not how it does it.
Interfaces are syntactically similar to classes, but they lack instance
variables, and their methods are declared without any body.

To implement an interface, a class must create the complete
set of methods defined by the interface. However, each class is
free to determine the details of its own implementation. By
providing the interface keyword, Java allows you to fully utilize the
"one interface, multiple methods" aspect of polymorphism.

59

An interface is defined much like a class. This is the general form of
an interface:

access interface interfaceName {
variables declaration;
methods declaration;

}
E.g.
public interface Area
{

final static float PI=3.1415;
float calculate(float x, float y);

}

Note that the method signature has no braces and is terminated
with a semicolon.

Variables can be declared inside of interface declarations.
They are implicitly final and static, meaning they cannot be
changed by the implementing class. They must also be initialized
with a constant value. All methods and variables are implicitly
public if the interface, itself, is declared as public.

The public access specifier indicates that the interface can
be used by any class in any package. If you do not specify that the
interface is public, your interface will be accessible only to classes
defined in the same package as the interface.

5.2 IMPLEMENTING AN INTERFACE

Once an interface has been defined, one or more classes
can implement that interface. To implement an interface, include
the implements clause in a class definition, and then create the
methods defined by the interface. The general form of a class that
includes the implements clause looks like this:

access class classname [extends superclass]
[implements interface [,interface...]] {
// class-body
}

An interface can extend other interfaces, just as a class can
extend or subclass another class. However, whereas a class can
extend only one other class, an interface can extend any number of
interfaces. The interface declaration includes a comma-separated
list of all the interfaces that it extends.

60

class Rect implements Area{
public float calculate(float x, float y)
{

return (x*y)
}

}//class Rect

class Square implements Area{
public float calculate(float x, float y)
{

return (x*x)
}

}//class Square
class InterfaceTest{
public static void main(String args[])
{
Rect r=new Rect();
Area a1;
a1=r;
System.out.println(“Area of rectangle = ”+ a1.calculate(10,10));

Area a2=new Square();
System.out.println(“Area of Square = ”+ a2.calculate(10,0));
}//main
}//class InterfaceTest

In the above example we have implemented the interface
Area declared in the previous section. We have declared two
classes which are Rect and Square, which have implemented the
interface. Inside the main() we can see two ways how the interface
methods can be called. First way is to declare an object of the class
and the interface, and then we assign the class object to the
interface. Second means of using the interface is to directly assign
the class object to the instance of the interface. Any one of the
above method can be used in Java programming.

Check Your Progress
1) An interface is a __________ type.

2) An interface cannot extend other interfaces. (True/False)

5.3 TYPES OF INHERITANCE

The use of abstract data types is intended to reduce code-
duplication and encourage code-reuse and separate compilation of
components of a large software system. To this end, most object-
oriented languages provide two different facilities for this purpose,

61

1. Polymorphism by which a form of generic programming is
supported. Generic components may be instantiated to
specialized ones by initializing the type parameters of the
generic program.

2. Inheritance by which new classes of objects may be derived
from existing generic ones and customized by new and special
functions, methods or properties not present in the generic
class. The derived class is said to be a sub-class of the generic
class. Equivalently the generic class A is said to be a super-
class of the derived class.

The above features of object-oriented languages do encourage
code-reuse and discourage code-duplication. However, a closer
look at inheritance is required as it raise various issues. If a class A
is specialized to class B, then it should be possible to avoid
duplication of code from class A into class B, by merely establishing
a relationship to that effect. Class B may then be said to inherit all
the functions and methods of class A.

There exists basically four types of inheritance.
 Single inheritance
 Multilevel inheritance
 Multiple inheritance
 Hierarchical inheritance

In single inheritance, one class extends one class only. In
multilevel inheritance, the ladder of single inheritance increases. In
multiple inheritance, one class directly extends more than one class
and in hierarchical inheritance one class is extended by more than
one class.

Multilevel Inheritance - In multilevel, one-to-one ladder increases.
Multiple classes are involved in inheritance, but one class extends
only one. The lowermost subclass can make use of all its super
classes' members. Multilevel inheritance is an indirect way of
implementing multiple inheritance.

Multiple Inheritance - In multiple inheritance, one class extends
multiple classes. Java does not support multiple inheritance but
C++ supports.

Hierarchical Inheritance - In hierarchical type of inheritance, one
class is extended by many subclasses. It is one-to-many
relationship.

Defining a Subclass: A subclass is defined as follows

62

class subclassname extends superclassname
{

variables declarations;
methods declarations;

}

The keyword extends signifies that the properties of
superclassname are extended to the subclassname. The subclass
now will have access to super class variables and methods in
addition to its owns variable and methods.

A subclass inherits all of the public and protected members of
its parent, no matter what package the subclass is in. If the
subclass is in the same package as its parent, it also inherits the
package-private members of the parent. You can use the inherited
members as is, replace them, hide them, or supplement them with
new members:

 The inherited fields can be used directly, just like any other
fields.

 You can declare a field in the subclass with the same name as
the one in the superclass, thus hiding it (not recommended).

 You can declare new fields in the subclass that are not in the
superclass.

 The inherited methods can be used directly as they are.

 You can write a new instance method in the subclass that has
the same signature as the one in the superclass, thus overriding
it.

 You can write a new static method in the subclass that has the
same signature as the one in the superclass, thus hiding it.

 You can declare new methods in the subclass that are not in the
superclass.

 You can write a subclass constructor that invokes the
constructor of the superclass, either implicitly or by using the
keyword super.

// This program uses inheritance to extend Box.

class Box {

double width, height, depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width; height = ob.height; depth = ob.depth;

}

63

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w; height = h; depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Here, Box is extended to include weight.

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight

BoxWeight(double w, double h, double d, double m) {

width = w; height = h;

depth = d; weight = m;

}

}

class DemoBoxWeight {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

}//main

}//class

The output from this program is shown here:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

64

Check Your Progress
1) Java supports multiple inheritance. (True/False)

2) A subclass inherits all of the public and protected members of its
parent. (True/False)

5.4 METHOD OVERRIDING

In a class hierarchy, when a method in a subclass has the
same name and type signature as a method in its superclass, then
the method in the subclass is said to override the method in the
superclass. When an overridden method is called from within a
subclass, it will always refer to the version of that method defined
by the subclass. The version of the method defined by the
superclass will be hidden. Consider the following:

// Method overriding.

class A {

int p, q;

A(int x, int y) {

p = x;

q = y;

}

// display p and q

void show() {

System.out.println("p and q: " + p + " " + q);

}

}

class B extends A {

int r;

B(int x, int y, int z) {

super(x, y);

r = z;

}

// display k – this overrides show() in A

void show() {

System.out.println("r: " + r);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

65

}

}

The output produced by this program is shown here:

r: 3

When show() is invoked on an object of type B, the version of
show() defined within B is used. That is, the version of show()
inside B overrides the version declared in A. If you wish to access
the superclass version of an overridden function, you can do so by
using super. For example, in this version of B, the superclass
version of show() is invoked within the subclass' version. This
allows all instance variables to be displayed.

class B extends A {

int r;

B(int x, int y, int z) {

super(x, y);

r = z;

}

void show() {

super.show(); // this calls A's show()

System.out.println("r: " + r);

}

}

If you substitute this version of A into the previous program, you will
see the following

output:

p and q: 1 2
r: 3

Here, super.show() calls the superclass version of show().
Method overriding occurs only when the names and the type
signatures of the two methods are identical. If they are not, then the
two methods are simply overloaded.

// Example for Method Overriding

class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

double area() {

66

System.out.println("Area for Figure is undefined.");

return 0;

}

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class FindAreas {

public static void main(String args[]) {

Figure f = new Figure(10, 10);

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref;

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

figref = f;

System.out.println("Area is " + figref.area());

}

}

67

The output from the program is shown here:

Inside Area for Rectangle.

Area is 45

Inside Area for Triangle.

Area is 40

Area for Figure is undefined.

Area is 0

5.5 USING FINAL

We can declare some or all of a class's methods final. We
use the final keyword in a method declaration to indicate that the
method cannot be overridden by subclasses. The Object class
does this—a number of its methods are final.

We might wish to make a method final if it has an
implementation that should not be changed and it is critical to the
consistent state of the object. For example, you might want to make
the displayAnimal method in this Animal class final:

class Animal {
…
…
final displayAnimal() {

….

}
...

}

Methods called from constructors should generally be
declared final. If a constructor calls a non-final method, a subclass
may redefine that method with surprising or undesirable results.
Note that you can also declare an entire class final — this prevents
the class from being subclassed. This is particularly useful, for
example, when creating an immutable class like the String class.

5.6 ABSTRACT METHODS AND CLASSES

An abstract class is a class that is declared abstract—it may
or may not include abstract methods. Abstract classes cannot be
instantiated, but they can be subclassed. An abstract method is a
method that is declared without an implementation (without braces,
and followed by a semicolon), like this:

68

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, the class itself must be
declared abstract, as in:
public abstract class GraphicObject {

// declare fields
// declare non-abstract methods
abstract void draw();

}

When an abstract class is subclassed, the subclass usually
provides implementations for all of the abstract methods in its
parent class. However, if it does not, the subclass must also be
declared abstract.

Any class that contains one or more abstract methods must
also be declared abstract. To declare a class abstract, you simply
use the abstract keyword in front of the class keyword at the
beginning of the class declaration. There can be no objects of an
abstract class. That is, an abstract class cannot be directly
instantiated with the new operator.

Such objects would be useless, because an abstract class is
not fully defined. Also, you cannot declare abstract constructors, or
abstract static methods. Any subclass of an abstract class must
either implement all of the abstract methods in the superclass, or
be itself declared abstract. Here is a simple example of a class with
an abstract method, followed by a class which implements that
method:

// A Simple demonstration of abstract.
abstract class A {

abstract void callme();
// concrete methods are still allowed in abstract classes
void callmetoo() {

System.out.println("This is a concrete method.");
}

}
class B extends A {

void callme() {
System.out.println("B's implementation of callme.");

}
}
class AbstractDemo {

public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo();

}//main
}//class

69

Check Your Progress
1) We use the _______ keyword in a method declaration to indicate
that the method cannot be overridden by subclasses.

2) Abstract classes cannot be ____________, but they can be
subclassed.

5.7 SUMMARY

An interface defines a protocol of communication between two
objects.

An interface declaration contains signatures, but no
implementations, for a set of methods, and might also contain
constant definitions.

A class that implements an interface must implement all the
methods declared in the interface.

An interface name can be used anywhere a type can be used.

Except for the Object class, a class has exactly one direct
superclass. A class inherits fields and methods from all its
superclasses, whether direct or indirect. A subclass can override
methods that it inherits, or it can hide fields or methods that it
inherits. (Note that hiding fields is generally bad programming
practice.)

The table in Overriding and Hiding Methods section shows the
effect of declaring a method with the same signature as a method
in the superclass.

The Object class is the top of the class hierarchy. All classes are
descendants from this class and inherit methods from it. Useful
methods inherited from Object include toString(), equals(), clone(),
and getClass().

You can prevent a class from being subclassed by using the final
keyword in the class's declaration. Similarly, you can prevent a
method from being overridden by subclasses by declaring it as a
final method.

An abstract class can only be subclassed; it cannot be instantiated.
An abstract class can contain abstract methods—methods that are
declared but not implemented. Subclasses then provide the
implementations for the abstract methods.

70

5.8 UNIT END EXERCISE

1) What is an Interface?
2) Describe the various forms of implementing interfaces. Give

example of Java code for each case?
3) What is the major difference between interface and a class?
4) Write a short note on Abstract Classes?
5) Write a program with an interface Shape which has a method

draw(). Write two classes Circle and Triangle which implement
the interface. Test the classes created.

5.9 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

71

6

PACKAGES

Unit Structure:

6.0 Objectives

6.1 Creating a Package

6.2 Naming a Package

6.3 Accessing a package

6.4 Using a Package

6.5 Summary

6.6 Unit end exercise

6.7 Further Reading

6.0 OBJECTIVES

The objectives of this chapter are to explains how to bundle
classes and interfaces into packages, how to use classes that are
in packages, and how to arrange your file system so that the
compiler can find your source files.

6.1 CREATING A PACKAGE

Packages are containers for classes that are used to keep
the class name space compartmentalized. For example, a package
allows you to create a class named List, which you can store in
your own package without concern that it will collide with some
other class named List stored elsewhere. Packages are stored in a
hierarchical manner and are explicitly imported into new class
definitions.

You should bundle these classes and the interface in a
package for several reasons, including the following:

 You and other programmers can easily determine that these
types are related.

 You and other programmers know where to find types that can
provide graphics-related functions.

72

 The names of your types won't conflict with the type names in
other packages because the package creates a new
namespace.

 You can allow types within the package to have unrestricted
access to one another yet still restrict access for types outside
the package.

To create a package simply include a package command as
the first statement in a Java source file. Any classes declared within
that file will belong to the specified package. The package
statement defines a name space in which classes are stored. If you
omit the package statement, the class names are put into the
default package, which has no name. Most of the time, you will
define a package for your code. This is the general form of the
package statement:

package pack;
Here, pack is the name of the package. For example, the

following statement creates a package called MyPack.
package MyPack;

Java uses file system directories to store packages. For
example, the .class files for any classes you declare to be part of
MyPack must be stored in a directory called MyPack. The directory
name must match the package name exactly, case is significant.
More than one file can include the same package statement. The
package statement simply specifies to which package the classes
defined in a file belong.

You can create a hierarchy of packages. To do so, simply
separate each package name from the one above it by use of a
period. The general form of a multileveled package statement is
shown here:

package pack1[.pack2[.pack3]];

6.2 NAMING A PACKAGE

It is likely that many programmers will use the same name
for different types. For example we can define a Rectangle class
when there is already a Rectangle class in the java.awt package.
Still, the compiler allows both classes to have the same name if
they are in different packages. The fully qualified name of each
Rectangle class includes the package name. That is, the fully
qualified name of the Rectangle class in the graphics package is
graphics.Rectangle, and the fully qualified name of the Rectangle
class in the java.awt package is java.awt.Rectangle.

73

Naming Conventions

 Package names are written in all lowercase to avoid conflict with
the names of classes or interfaces.

 Companies use their reversed Internet domain name to begin
their package names—for example, com.example.orion for a
package named orion created by a programmer at
example.com.

 Name collisions that occur within a single company need to be
handled by convention within that company, perhaps by
including the region or the project name after the company
name (for example, com.company.region.package).

 Packages in the Java language itself begin with java. or javax.

 In some cases, the internet domain name may not be a valid
package name. This can occur if the domain name contains a
hyphen or other special character, if the package name begins
with a digit or other character that is illegal to use as the
beginning of a Java name, or if the package name contains a
reserved Java keyword, such as "int". In this event, the
suggested convention is to add an underscore.

Check Your Progress
1) The ________ statement defines a name space in which classes
are stored.

2) Package names are written in all ______ case to avoid conflict
with the names of classes or interfaces

6.3 ACCESSING A PACKAGE

There are no core Java classes in the unnamed default
package; all of the standard classes are stored in some named
package. Since classes within packages must be fully qualified with
their package name or names, it could become tedious to type in
the long dot-separated package path name for every class you
want to use. For this reason, Java includes the import statement to
bring certain classes, or entire packages, into visibility. Once
imported, a class can be referred to directly, using only its name.
The import statement is a convenience to the programmer and is
not technically needed to write a complete Java program. If you are
going to refer to a few dozen classes in your application, however,
the import statement will save a lot of typing.

74

To use a public package member from outside its package, you
must do one of the following:
1) Refer to the member by its fully qualified name
2) Import the package member
3) Import the member's entire package

Each is appropriate for different situations, as explained in the
below.

1) Referring to a Package Member by Its Qualified Name

So far, most of the examples in this book have referred to
types by their simple names, such as StaticDemo and
OverloadDemo. You can use a package member's simple name if
the code you are writing is in the same package. However, if you
are trying to use a member from a different package and that
package has not been imported, you must use the member's fully
qualified name, which includes the package name. Here is the fully
qualified name for the Rectangle class declared in the graphics
package in the previous example.

graphics.Rectangle

2) Importing a Package Member

To import a specific member into the current file, put an
import statement at the beginning of the file before any type
definitions. For example you would import the Rectangle class from
the graphics package created like this:

import graphics.Rectangle;
Now you can refer to the Rectangle class by its simple

name.
Rectangle myRectangle = new Rectangle();

This approach works well if you use just a few members
from the graphics package. But if you use many types from a
package, you should import the entire package.

3) Importing an Entire Package

To import all the types contained in a particular package, use
the import statement with the asterisk (*) wildcard character.

import graphics.*;
Now you can refer to any class or interface in the graphics package
by its simple name.

Circle myCircle = new Circle();
Rectangle myRectangle = new Rectangle();

The asterisk in the import statement can be used only to
specify all the classes within a package, as shown here. It cannot

75

be used to match a subset of the classes in a package. For
example, the following does not match all the classes in the
graphics package that begin with A.
import graphics.A*; //does not work

Instead, it generates a compiler error. With the import statement,
you generally import only a single package member or an entire
package.

For convenience, the Java compiler automatically imports three
entire packages for each source file: (1) the package with no name,
(2) the java.lang package, and (3) the current package (the
package for the current file).

Check Your Progress
1) All of the standard classes are stored in some named package.
(True/False)

2) The import statement can be written anywhere in the program.
(True/False)

6.4 USING A PACKAGE

When a package is imported, only those items within the
package declared as public will be available to non-subclasses in
the importing code. For example, if you want the MyBalance class
of the package MyPack to be available as a stand-alone class for
general use outside of MyPack, then you will need to declare it as
public and put it into its own file, as shown here:

package MyPack;

public class MyBalance

{

String name;

double bal;

public MyBalance(String n, double b) {

name = n;

bal = b;

}

public void show() {

if(bal<0)

System.out.print("—> ");

System.out.println(name + ": $" + bal);

}

}

76

The MyBalance class is now public. Also, its constructor and its
show() method are public, too. This means that they can be
accessed by any type of code outside the MyPack package. For
example, here TestBalance imports MyPack and is then able to
make use of the MyBalance class:

import MyPack.*;

class TestBalance

{

public static void main(String args[])

{

MyBalance test = new MyBalance("S. R. Tendulkar", 77.88);

test.show(); // you may also call show()

}

}

As an experiment, remove the public specifier from the MyBalance
class and then try compiling TestBalance. As explained, errors will
result.

6.5 SUMMARY

 To create a package for a type, put a package statement as the
first statement in the source file that contains the type (class,
interface, enumeration, or annotation type).

 To use a public type that's in a different package, you have
three choices: (1) use the fully qualified name of the type, (2)
import the type, or (3) import the entire package of which the
type is a member.

 The path names for a package's source and class files mirror
the name of the package.

 You might have to set your CLASSPATH so that the compiler
and the JVM can find the .class files for your types.

6.6 UNIT END EXERCISE

1) What is a package?
2) How do we design a package?
3) How do we add a class or interface to a package?
4) How do we tell Java that we want to use a particular package in

file?
5) Define a package My Pack; in which you will write a class

‘Balance’, The class ‘Balance’ will have data member as string

77

name; & double bal; write a constructor for ‘Balance’ class
which will initialize name & bal; write a function void show () in
you will display name & bal. Now this MyPack package is now
ready to import. Import this package in your class & use
‘Balance’ class.

6.7 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

78

7

EXCEPTION HANDLING

Unit Structure:

7.0 Objectives

7.1 What Is an Exception?

7.2 Exception Types

7.3 Catching and Handling Exceptions

7.4 Using Finally Statement

7.5 How to Throw Exceptions

7.6 User Defined Exceptions

7.7 Summary

7.8 Unit end exercise

7.9 Further Reading

7.0 OBJECTIVES

The objective of this chapter is to examine Java's exception-
handling mechanism. Here we will learn the types of exception,
how to catch and handle an exception. Also we will discover how to
throw an exception and to define our own exception.

7.1 WHAT ARE EXCEPTIONS

An exception is an abnormal condition that arises in a code
sequence at run time. In other words, an exception is a runtime
error. In computer languages that do not support exception
handling, errors must be checked and handled manually—typically
through the use of error codes, and so on. This approach is as
cumbersome as it is troublesome. Java's exception handling avoids
these problems and, in the process, brings run-time error
management into the object-oriented world.

An exception can be defined as an event which occurs
during the execution of a program that disrupts the normal flow of
the program's instructions. A Java exception is an object that
describes an exceptional (that is, error) condition that has occurred
in a piece of code. When an exceptional condition arises, an object
representing that exception is created and thrown in the method
that caused the error. That method may choose to handle the

79

exception itself, or pass it on. Either way, at some point, the
exception is caught and processed.

Exceptions can be generated by the Java run-time system,
or they can be manually generated by your code. Exceptions
thrown by Java relate to fundamental errors that violate the rules of
the Java language or the constraints of the Java execution
environment. Manually generated exceptions are typically used to
report some error condition to the caller of a method.

Java exception handling is managed via five keywords: try,
catch, throw, throws, and finally. Briefly, here is how they work.
Program statements that you want to monitor for exceptions are
contained within a try block. If an exception occurs within the try
block, it is thrown. Your code can catch this exception (using catch)
and handle it in some rational manner.

System-generated exceptions are automatically thrown by
the Java runtime system. To manually throw an exception, use the
keyword throw. Any exception that is thrown out of a method must
be specified as such by a throws clause. Any code that absolutely
must be executed before a method returns is put in a finally block.

7.2 EXCEPTION TYPES

1) Checked exception

These are exceptional conditions that a well-written
application should anticipate and recover from. For example,
suppose an application prompts a user for an input file name, then
opens the file by passing the name to the constructor for
java.io.FileReader. Normally, the user provides the name of an
existing, readable file, so the construction of the FileReader object
succeeds, and the execution of the application proceeds normally.
But sometimes the user supplies the name of a nonexistent file,
and the constructor throws java.io.FileNotFoundException. A well-
written program will catch this exception and notify the user of the
mistake, possibly prompting for a corrected file name.

Checked exceptions are subject to the Catch or Specify
Requirement. All exceptions are checked exceptions, except for
those indicated by Error, RuntimeException, and their subclasses.

2) Error

These are exceptional conditions that are external to the
application, and that the application usually cannot anticipate or
recover from. For example, suppose that an application

80

successfully opens a file for input, but is unable to read the file
because of a hardware or system malfunction. The unsuccessful
read will throw java.io.IOError. An application might choose to catch
this exception, in order to notify the user of the problem — but it
also might make sense for the program to print a stack trace and
exit. Errors are not subject to the Catch or Specify Requirement.
Errors are those exceptions indicated by Error and its subclasses.

3) Runtime Exception

These are exceptional conditions that are internal to the
application, and that the application usually cannot anticipate or
recover from. These usually indicate programming bugs, such as
logic errors or improper use of an API. For example, consider the
application described previously that passes a file name to the
constructor for FileReader. If a logic error causes a null to be
passed to the constructor, the constructor will throw
NullPointerException. The application can catch this exception, but
it probably makes more sense to eliminate the bug that caused the
exception to occur.

Runtime exceptions are not subject to the Catch or Specify
Requirement. Runtime exceptions are those indicated by
RuntimeException and its subclasses. Errors and runtime
exceptions are collectively known as unchecked exceptions.

Check Your Progress
1) An exception is a _______ error.

2) Any exception that is thrown out of a method must be specified
as such by a ______ clause.

7.3 CATCHING & HANDLING EXCEPTIONS

This section describes how to use the three exception
handler components — the try, catch, and finally blocks — to write
an exception handler. The following example defines and
implements a class named NumbersList. When constructed,
NumbersList creates an ArrayList that contains 10 Integer elements
with sequential values 0 through 9. The NumbersList class also
defines a method named writeList, which writes the list of numbers
into a text file called OutFile.txt. This example uses output classes
defined in java.io, which are covered in Basic I/O.

// Note: This class won't compile
import java.io.*;
import java.util.List;
import java.util.ArrayList;

81

public class NumbersList {

private List<Integer> list;
private static final int SIZE = 10;

public NumbersList() {
list = new ArrayList<Integer>(SIZE);
for (int i = 0; i < SIZE; i++) {

list.add(new Integer(i));
}

}

public void writeList() {
PrintWriter out = new PrintWriter(new FileWriter("OutFile.txt"));

for (int i = 0; i < SIZE; i++) {
out.println("Value at: " + i + " = " + list.get(i));

}
out.close();

}
}

The first line is a call to a constructor. The constructor
initializes an output stream on a file. If the file cannot be opened,
the constructor throws an IOException. The second boldface line is
a call to the ArrayList class's get method, which throws an
IndexOutOfBoundsException if the value of its argument is too
small (less than 0) or too large (more than the number of elements
currently contained by the ArrayList).

If you try to compile the NumbersList class, the compiler
prints an error message about the exception thrown by the
FileWriter constructor. However, it does not display an error
message about the exception thrown by get. The reason is that the
exception thrown by the constructor, IOException, is a checked
exception, and the one thrown by the get method,
IndexOutOfBoundsException, is an unchecked exception.

The try Block

The first step in constructing an exception handler is to
enclose the code that might throw an exception within a try block. In
general, a try block looks like the following:

try {
code

}
catch and finally blocks . . .

82

The segment in the example labeled code contains one or
more legal lines of code that could throw an exception. If an
exception occurs within the try block, that exception is handled by
an exception handler associated with it. To associate an exception
handler with a try block, you must put a catch block after it.

Sample Code:
PrintWriter out = null;

try {
System.out.println("Entered try statement");
out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + list.get(i));
}

}
catch and finally statements . . .

The catch Blocks

We can associate exception handlers with a try block by
providing one or more catch blocks directly after the try block. No
code can be between the end of the try block and the beginning of
the first catch block.

try {

} catch (ExceptionType name) {

} catch (ExceptionType name) {

}

Each catch block is an exception handler and handles the
type of exception indicated by its argument. The argument type,
ExceptionType, declares the type of exception that the handler can
handle and must be the name of a class that inherits from the
Throwable class. The handler can refer to the exception with name.

The catch block contains code that is executed if and when
the exception handler is invoked. The runtime system invokes the
exception handler when the handler is the first one in the call stack
whose ExceptionType matches the type of the exception thrown.
The system considers it a match if the thrown object can legally be
assigned to the exception handler's argument.

83

Sample Code:
try {

. . . .

. . . .
} catch (FileNotFoundException e) {

System.err.println("FileNotFoundException: " + e.getMessage());
throw new SampleException(e);

} catch (IOException e) {
System.err.println("Caught IOException: " + e.getMessage());

}

Example: The following program includes a try block and a catch
clause which processes the ArithmeticException generated by the
division-by-zero error:

class E2 {
public static void main(String args[]) {
int d, a;
try { // monitor a block of code.

d = 0;
a = 42 / d;
System.out.println("This will not be printed.");

} catch (ArithmeticException e) {
System.out.println("Division by zero.");

}
System.out.println("After catch statement.");

}
}
This program generates the following output:
Division by zero.
After catch statement.

Check Your Progress
1) To associate an exception handler with a try block, you must put
a _______ block after it.

2) The catch block contains code that is executed always.
(True/False)

7.4 USING FINALLY STATEMENTS

The finally block always executes when the try block exits.
This ensures that the finally block is executed even if an
unexpected exception occurs. But finally is useful for more than just
exception handling — it allows the programmer to avoid having
cleanup code accidentally bypassed by a return, continue, or break.

84

Putting cleanup code in a finally block is always a good practice,
even when no exceptions are anticipated.

The try block of the writeList method that you've been working
with here opens a PrintWriter. The program should close that
stream before exiting the writeList method. This poses a somewhat
complicated problem because writeList's try block can exit in one of
three ways.
1. The new FileWriter statement fails and throws an IOException.
2. The vector.elementAt(i) statement fails and throws an

ArrayIndexOutOfBoundsException.
3. Everything succeeds and the try block exits normally.

The runtime system always executes the statements within the
finally block regardless of what happens within the try block. So it's
the perfect place to perform cleanup. The following finally block for
the writeList method cleans up and then closes the PrintWriter.

finally {
if (out != null) {

System.out.println("Closing PrintWriter");
out.close();

} else {
System.out.println("PrintWriter not open");

}
}

7.5 HOW TO THROW EXCEPTIONS

1) throw
So far, we have only been catching exceptions that are

thrown by the Java run-time system. However, it is possible for your
program to throw an exception explicitly, using the throw statement.
The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type
Throwable or a subclass of Throwable. There are two ways you can
obtain a Throwable object: using a parameter into a catch clause,
or creating one with the newoperator. The flow of execution stops
immediately after the throw statement; any subsequent statements
are not executed. The nearest enclosing try block is inspected to
see if it has a catch statement that matches the type of the
exception. If it does find a match, control is transferred to that
statement. If not, then the next enclosing try statement is inspected,
and so on. If no matching catch is found, then the default exception
handler halts the program and prints the stack trace.

85

Let's look at the throw statement in context. The following
pop method is taken from a class that implements a common stack
object. The method removes the top element from the stack and
returns the object.

public Object pop() {

Object obj;

if (size == 0) {

throw new EmptyStackException();

}

obj = objectAt(size - 1);

setObjectAt(size - 1, null);

size--;

return obj;

}

The pop method checks to see whether any elements are on
the stack. If the stack is empty (its size is equal to 0), pop
instantiates a new EmptyStackException object (a member of
java.util) and throws it.

2) throws
If a method is capable of causing an exception that it does

not handle, it must specify this behavior so that callers of the
method can guard themselves against that exception. You do this
by including a throws clause in the method's declaration. A throws
clause lists the types of exceptions that a method might throw. This
is necessary for all exceptions, except those of type Error or
RuntimeException, or any of their subclasses. All other exceptions
that a method can throw must be declared in the throws clause. If
they are not, a compile-time error will result. This is the general
form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{

// body of method
}

Following is an example of an incorrect program that tries to
throw an exception that it does not catch. Because the program
does not specify a throws clause to declare this fact, the program
will not compile.

86

// This program contains an error and will not compile.
class ThrowsDemo
{

static void throwOne() {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}
public static void main(String args[]) {

throwOne();
}
}

To make this example compile, you need to make two
changes. First, you need to declare that throwOne() throws
IllegalAccessException. Second, main() must define a try/catch
statement that catches this exception. The corrected example is
shown here:

// This is now correct.

class ThrowsDemo

{

static void throwOne() throws IllegalAccessException

{

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

Here is the output generated by running this example program:

inside throwOne

caught java.lang.IllegalAccessException: demo

7.6 USER DEFINED EXCEPTIONS

We can create our own exceptions in Java. Keep the following
points in mind when writing our own exception classes:

87

 All exceptions must be a child of Throwable.
 If you want to write a checked exception that is automatically

enforced by the Handle or Declare Rule, you need to extend the
Exception class.

 If you want to write a runtime exception, you need to extend the
RuntimeException class.

We can define our own Exception class as below:

class MyException extends Exception
{
}

You just need to extend the Exception class to create your
own Exception class. These are considered to be checked
exceptions. The following InsufficientFundsException class is a
user-defined exception that extends the Exception class, making it
a checked exception. An exception class is like any other class,
containing useful fields and methods.

Example:

// File Name InsufficientFundsException.java

import java.io.*;

public class InsufficientFundsException extends Exception

{

private double amount;

public InsufficientFundsException(double amount)

{

this.amount = amount;

}

public double getAmount()

{

return amount;

}

}

To demonstrate using our user-defined exception, the following
CheckingAccount class contains a withdraw() method that throws
an InsufficientFundsException.

// File Name CheckingAccount.java

import java.io.*;

public class CheckingAccount

{

private double balance;

private int number;

88

public CheckingAccount(int number)

{

this.number = number;

}

public void deposit(double amount)

{

balance += amount;

}

public void withdraw(double amount) throws

InsufficientFundsException

{

if(amount <= balance)

{

balance -= amount;

}

else

{

double needs = amount - balance;

throw new InsufficientFundsException(needs);

}

}

public double getBalance()

{

return balance;

}

public int getNumber()

{

return number;

}

}

The following BankDemo program demonstrates invoking the
deposit() and withdraw() methods of CheckingAccount.

// File Name BankDemo.java

public class BankDemo

{

public static void main(String [] args)

{

CheckingAccount c = new CheckingAccount(101);

System.out.println("Depositing $500...");

c.deposit(500.00);

89

try

{

System.out.println("\nWithdrawing $100...");

c.withdraw(100.00);

System.out.println("\nWithdrawing $600...");

c.withdraw(600.00);

}catch(InsufficientFundsException e)

{

System.out.println("Sorry, but you are short $"

+ e.getAmount());

e.printStackTrace();

}

}

}

Compile all the above three files and run BankDemo, this would
produce following result:

Depositing $500...

Withdrawing $100...

Withdrawing $600...

Sorry, but you are short $200.0

InsufficientFundsException

at CheckingAccount.withdraw(CheckingAccount.java:25)

at BankDemo.main(BankDemo.java:13)

Check Your Progress
1) The finally block is the perfect place to perform cleanup.
(True/False)

2) All exceptions must be a child of Throwable. (True/False)

7.7 SUMMARY

A program can use exceptions to indicate that an error occurred. To
throw an exception, use the throw statement and provide it with an
exception object — a descendant of Throwable — to provide
information about the specific error that occurred. A method that
throws an uncaught, checked exception must include a throws
clause in its declaration.

90

A program can catch exceptions by using a combination of the try,
catch, and finally blocks.

 The try block identifies a block of code in which an exception
can occur.

 The catch block identifies a block of code, known as an
exception handler that can handle a particular type of exception.

 The finally block identifies a block of code that is guaranteed to
execute, and is the right place to close files, recover resources,
and otherwise clean up after the code enclosed in the try block.

The try statement should contain at least one catch block or a
finally block and may have multiple catch blocks.

The class of the exception object indicates the type of
exception thrown. The exception object can contain further
information about the error, including an error message. With
exception chaining, an exception can point to the exception that
caused it, which can in turn point to the exception that caused it,
and so on.

7.8 UNIT END EXERCISE

1) What is an exception?
2) How do we define a try..catch block?
3) How many catch blocks can be used with one try block?
4) Write a program that throws an exception whenever an attempt

is made to divide a given number in a loop, which runs from 1 to
10.

5) Define an exception “NoMatchFound” that is thrown when a
string is not equal to “SYBSC”. Write a program that uses this
exception.

7.9 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

91

8

STREAMS & FILES

Unit Structure:

8.0 Objectives

8.1 File I/O

8.2 Streams

8.3 Byte Streams

8.4 Character Streams

8.5 Random Access Files

8.6 Summary

8.7 Unit end exercise

8.8 Further Reading

8.0 OBJECTIVES

The objective of this chapter is to learn the Java platform
classes used for basic I/O. It first focuses on I/O Streams, a
powerful concept that greatly simplifies I/O operations. Then the
lesson looks at file I/O and file system operations, including random
access files.

8.1 FILE I/O

The File Class
The File class is Java's representation of a file or directory

path name. Because file and directory names have different
formats on different platforms, a simple string is not adequate to
name them.

The File class contains several methods for working with the
path name, deleting and renaming files, creating new directories,
listing the contents of a directory, and determining several common
attributes of files and directories.

Creating a File Object
You create a File object by passing in a String that

represents the name of a file, and possibly a String or another File
object. By default, the JVM will use the directory in which the
application was executed as the "current path". You can override

92

this default behavior by specifying the user.dir system property.
File c = new File("c:\\windows\\system\\smurf.gif");
File d = new File("system\\smurf.gif");

Note the double backslashes. Because the backslash is a
Java String escape character, you must type two of them to
represent a single, "real" backslash. The above specifications are
not very portable. The problem is that the direction of the slashes
and the way the "root" of the path is specified is specific for the
platform in question. First, Java allows either type of slash to be
used on any platform, and translates it appropriately. This means
that you could type

File e = new File("c:/windows/system/smurf.gif");
and it will find the same file on Windows.

1) File Attribute Methods

The File object has several methods that provide information on the
current state of the file.

 boolean canRead() - Returns true if the file is readable
 boolean canWrite() - Returns true if the file is writeable
 boolean exists() - Returns true if the file exists
 boolean isAbsolute() - Returns true if the file name is an

absolute path name

 boolean isDirectory() - Returns true if the file name is a directory
 boolean isFile() - Returns true if the file name is a "normal" file
 boolean isHidden() - Returns true if the file is marked "hidden"
 long lastModified() - Returns a long indicating the last time the

file was

modified
 long length() - Returns the length of the contents of the file

2) File Name Methods

The following list shows the methods of the File class that relate to
getting the file name, or part of it.

 boolean equals(Object) - Compares the file names to see if they
are equivalent

 File getAbsoluteFile() - Gets an abstract file name that
represents resolution of the absolute file name for this File

 String getAbsolutePath() - Resolves the absolute file name for
this File

 String getName() - Returns the name for the file without any
preceding path information.

 String getParent() - Returns the path to the file name, without
the actual file name.

 String getPath() - Returns the path used to construct this object.

93

3) File System Modification Methods

 boolean delete() - Deletes the file specified by this file name.
 void deleteOnExit() - Sets up processing to delete this file when

the JVM exits (via System.exit() or when only daemon threads
are left running.).

 boolean mkdir() - Creates this directory. All parent directories
must already exist.

 boolean mkdirs() - Creates this directory and any parent
directories that do not exist.

 boolean renameTo(File) - Renames the file.

4) Directory List Methods

 String[] list() - Returns an array of Strings that represent the
names of the files contained within this directory. Returns null if
the file is not a directory.

 File[] listFiles() - Similar to list(), but returns an array of File
objects.

// Demonstrate File.

import java.io.File;

class FileDemo {

static void p(String s) {

System.out.println(s);

}

public static void main(String args[]) {

File f1 = new File("/java/COPYRIGHT");

p("File Name: " + f1.getName());

p("Path: " + f1.getPath());

p("Parent: " + f1.getParent());

p(f1.exists() ? "exists" : "does not exist");

p(f1.canWrite() ? "is writeable" : "is not writeable");

p(f1.canRead() ? "is readable" : "is not readable");

p("is " + (f1.isDirectory() ? "" : "not" + " a directory"));

p(f1.isFile() ? "is normal file" : "might be a named
pipe");

p(f1.isAbsolute() ? "is absolute" : "is not absolute");

}//main

}//class

When you run this program, you will see something similar to the
following:

File Name: COPYRIGHT

Path: /java/COPYRIGHT

94

Parent: /java

exists

is writeable

is readable

is not a directory

is normal file

is absolute

8.2 STREAMS

Most fundamental I/O in Java is based on streams. A stream
represents a flow of data, or a channel of communication with (at
least conceptually) a writer at one end and a reader at the other.
When you are working with the java.io package to perform terminal
input and output, reading or writing files, or communicating through
sockets in Java, you are using various types of streams.

An I/O Stream represents an input source or an output
destination. A stream can represent many different kinds of sources
and destinations, including disk files, devices, other programs, and
memory arrays. Streams support many different kinds of data,
including simple bytes, primitive data types, localized characters,
and objects. Some streams simply pass on data; others manipulate
and transform the data in useful ways.

No matter how they work internally, all streams present the
same simple model to programs that use them: A stream is a
sequence of data. A program uses an input stream to read data
from a source, one item at a time. A program uses an output
stream to write data to a destination, one item at time.

8.3 BYTE STREAM

InputStream and OutputStream are abstract classes that
define the lowest-level interface for all byte streams. They contain
methods for reading or writing an unstructured flow of byte-level
data. Because these classes are abstract, you can't create a
generic input or output stream. Java implements subclasses of
these for activities such as reading from and writing to files and
communicating with sockets. Because all byte streams inherit the
structure of InputStream or OutputStream, the various kinds of byte
streams can be used interchangeably. A method specifying an
InputStream as an argument can, of course, accept any subclass of
InputStream. Specialized types of streams can also be layered to
provide features, such as buffering, filtering, or handling higher-
level data types.

95

1) InputStream
InputStream is an abstract class that defines Java's model of

streaming byte input. All of the methods in this class will throw an
IOException on error conditions.

Method & Description

 int available() - Returns the number of bytes of input currently
available for reading.

 void close() - Closes the input source. Further read attempts
will generate an IOException.

 int read() - Returns an integer representation of the next
available byte of input. –1 is returned when the end of the file is
encountered.

 int read(byte buffer[]) - Attempts to read up to buffer.length
bytes into buffer and returns the actual number of bytes that
were successfully read. –1 is returned when the end of the file is
encountered.

 int read(byte buffer[], int offset, int numBytes) - Attempts to read
up to numBytes bytes into buffer starting at buffer[offset],
returning the number of bytes successfully read. –1 is returned
when the end of the file is encountered.

2) OutputStream
OutputStream is an abstract class that defines streaming

byte output. All of the methods in this class return a void value and
throw an IOException in the case of errors.

Method & Description

 void close() - Closes the output stream. Further write attempts
will generate an IOException.

 void flush() - Finalizes the output state so that any buffers are
cleared. That is, it flushes the output buffers.

 void write(int b) - Writes a single byte to an output stream. Note
that the parameter is an int, which allows you to call write() with
expressions without having to cast them back to byte.

 void write(byte buffer[]) - Writes a complete array of bytes to an
output stream.

 void write(byte buffer[], int offset, int numBytes) - Writes a
subrange of numBytes bytes from the array buffer, beginning at
buffer[offset].

96

3) FileInputStream
The FileInputStream class creates an InputStream that you

can use to read bytes from a file. Its two most common constructors
are shown here:

FileInputStream(String filepath)
FileInputStream(File fileObj)

Either can throw a FileNotFoundException. Here, filepath is the full
path name of a file, and fileObj is a File object that describes the
file. The following example creates two FileInputStreams that use
the same disk file and each of the two constructors:

FileInputStream f0 = new FileInputStream("/autoexec.bat")
File f = new File("/autoexec.bat");
FileInputStream f1 = new FileInputStream(f);

4) FileOutputStream
FileOutputStream creates an OutputStream that you can use

to write bytes to a file. Its most commonly used constructors are
shown here:

FileOutputStream(String filePath)
FileOutputStream(File fileObj)
FileOutputStream(String filePath, boolean append)

They can throw an IOException or a SecurityException. Here,
filePath is the full path name of a file, and fileObj is a File object
that describes the file. If append is true, the file is opened in append
mode.

Example: To use Byte Stream Classes
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class CopyBytes {
public static void main(String[] args) throws IOException {

FileInputStream in = null;
FileOutputStream out = null;
try {

in = new FileInputStream("abc.txt");
out = new FileOutputStream("pqr.txt");
int c;
while ((c = in.read()) != -1) {

out.write(c);
}

}
finally {

if (in != null) {
in.close();

}

97

if (out != null) {
out.close();

}
}

}//main
}//class

Check Your Progress
1) A _______ represents a flow of data.

2) InputStream and OutputStream are _________ classes.

8.4 CHARACTER STREAM

Reader and Writer are very much like InputStream and
OutputStream, except that they deal with characters instead of
bytes. As true character streams, these classes correctly handle
Unicode characters, which was not always the case with byte
streams. Often, a bridge is needed between these character
streams and the byte streams of physical devices, such as disks
and networks. InputStreamReader and OutputStreamWriter are
special classes that use a character-encoding scheme to translate
between character and byte streams.

1) Reader
Reader is an abstract class that defines Java's model of

streaming character input. All of the methods in this class will throw
an IOException on error conditions.

Method & Description

 abstract void close() - Closes the input source. Further read
attempts will generate an IOException.

 int read() - Returns an integer representation of the next
available character from the invoking input stream. –1 is
returned when the end of the file is encountered.

 int read(char buffer[]) - Attempts to read up to buffer.length
characters into buffer and returns the actual number of
characters that were successfully read. –1 is returned when the
end of the file is encountered.

 abstract int read(char buffer[],int offset,int numChars) - Attempts
to read up to numChars characters into buffer starting at
buffer[offset], returning the number of characters successfully
read. –1 is returned when the end of the file is encountered.

98

2) Writer
Writer is an abstract class that defines streaming character output.
All of the methods in this class return a void value and throw an
IOException in the case of errors.

Method & Description

 abstract void close() - Closes the output stream. Further write
attempts will generate an IOException.

 abstract void flush() - Finalizes the output state so that any
buffers are cleared. That is, it flushes the output buffers.

 void write(int ch) - Writes a single character to the invoking
output stream. Note that the parameter is an int, which allows
you to call write with expressions without having to cast them
back to char.

 void write(char buffer[]) - Writes a complete array of characters
to the invoking output stream.

 abstract void write(char buffer[], int offset, int numChars) -
Writes a subrange of numChars characters from the array
buffer, beginning at buffer[offset] to the invoking output stream.

 void write(String str) - Writes str to the invoking output stream.

 void write(String str, int offset, int numChars) - Writes a
subrange of numChars characters from the array str, beginning
at the specified offset.

3) FileReader
The FileReader class creates a Reader that you can use to

read the contents of a file. Its two most commonly used
constructors are shown here:

FileReader(String filePath)
FileReader(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full
path name of a file, and fileObj is a File object that describes the
file.

4) FileWriter
FileWriter creates a Writer that you can use to write to a file. Its
most commonly used constructors are shown here:

FileWriter(String filePath)
FileWriter(String filePath, boolean append)
FileWriter(File fileObj)

They can throw an IOException or a SecurityException.
Here, filePath is the full path name of a file, and fileObj is a File
object that describes the file. If append is true, then output is
appended to the end of the file.

99

Example: To use Character Stream Classes
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class CopyCharacters {
public static void main(String[] args) throws IOException {

FileReader inputStream = null;
FileWriter outputStream = null;

try {
inputStream = new FileReader("abc.txt");
outputStream = new FileWriter("xyz.txt");
int c;
while ((c = inputStream.read()) != -1) {

outputStream.write(c);
}

}
finally {

if (inputStream != null) {
inputStream.close();

}
if (outputStream != null) {

outputStream.close();
}

}
}//main
}//class

Check Your Progress
1) We can use the read method after the source is closed.
(True/False)

2) FileReader is used to write data to the file. (True/False)

8.5 RANDOM ACCESS FILES

RandomAccessFile provides two-way communication with a file-
system file to and from specific locations in that file.

Before describing this any further, a few things are important to
note:

 You can use RandomAccessFile to work only with physical
devices that provide random-access support. For instance, you
cannot open a tape-drive stream as a random-access file.

100

 RandomAccessFile does not extend InputStream,
OutputStream, Reader, or Writer. This means that you cannot
wrap it in a filter!

 You are responsible for correct read positioning! If you write an
int at position 42 in the file, you must make sure you are at
position 42 when attempting to read that int!

RandomAccessFile implements DataInput and DataOutput; it acts
like a combination of DataInputStream and DataOutputStream. You
can read and write primitive and String data at any position in the
stream. Of course you can also read and write bytes as you do
when using InputStream and OutputStream.

To work with a RandomAccessFile, you create a new instance
passing the name of the file (a String or File object) and the mode
in which you want to work with the file. The mode is a String that
can be either:

 "r" - the file will be opened in "read" mode. If you try to use any
output methods an exception will be thrown. If the file does not
exist, a FileNotFoundException will be thrown. (More on I/O
exceptions later!)

 "rw" - the file will be opened in "read/write" mode. If the file does
not exist, it will try to create it.

In either mode, you can use the read() methods as well as
methods like readInt(), readLong() and readUTF(). In read/write
mode you can use the corresponding write() methods.

The big differences with RandomAccessFile are the
positioning methods. You can call getFilePointer() (which returns a
long) at any time to determine the current position within the file.
This method is useful if you want to track positions as you write
data to a file, possibly to write a corresponding index.

You can jump to any location in the file as well, by calling
seek() (passing a long value) to position the file pointer.

As an example, we present a simple address book lookup
program. There are two parts to this example:
 Address data creation - address-listing objects are created and

their data stored in a RandomAccessFile, and a sequential
index file tracks the position of each record.

 Address data lookup - user inputs a name to seek, the index is
determined for that name, and the name record is read from the
RandomAccessFile.

101

Note that this is not an example of efficient indexing; a very simple
sequential index is used. For higher efficiency and easy relationship
tracking, we recommend using a database management system
(DBMS).

8.7 SUMMARY

The java.io package contains many classes that your
programs can use to read and write data. Most of the classes
implement sequential access streams. The sequential access
streams can be divided into two groups: those that read and write
bytes and those that read and write Unicode characters. Each
sequential access stream has a speciality, such as reading from or
writing to a file, filtering data as its read or written, or serializing an
object.

The java.nio.file package provides extensive support for file and file
system I/O. This is a very comprehensive API, but the key entry
points are as follows:
 The Path class has methods for manipulating a path, as well as

many file operations, such as moving, copy, deleting.
 The Attributes class supports reading and writing file metadata.
 The FileSystem class has a variety of methods for obtaining

information about the file system.

8.8 UNIT END EXERCISE

1) Explain how a File object is created.
2) List and explain with an example any 5 methods of the file class.
3) Write a short note on Streams?
4) Explain with an example InputStream and OutputStream.
5) Explain the FileReader and FileWriter classes.

8.9 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

102

9

APPLETS

Unit Structure:
9.0 Objectives
9.1 Introduction to Applets
9.2 Difference between Applets and Applications
9.3 Applet Life Cycle
9.4 Creating Applets
9.5 Passing parameters
9.6 Summary
9.7 Unit end exercise
9.8 Further Reading

9.0 OBJECTIVES

The objectives of this chapter are to learn about Applets,
What are the advantages, disadvantages; How an Applet is created
and executed. Here we will also know about the life cycle of an
Applet and how to pass parameters to an Applet.

9.1 INTRODUCTION TO APPLETS

An applet is a Java program that runs in a Web browser. An
applet can be a fully functional Java application because it has the
entire Java API at its disposal. All applets are subclasses of Applet.
Thus, all applets must import java.applet.

Applets are not executed by the console-based Java run-
time interpreter. Rather, they are executed by either a Web browser
or an applet viewer. The Applet class is contained in the java.applet
package. Applet contains several methods that give you detailed
control over the execution of your applet. In addition, java.applet
also defines three interfaces: AppletContext, AudioClip, and
AppletStub.

The Applet Class

The Applet class defines the methods shown in table below.
Applet provides all necessary support for applet execution, such as
starting and stopping. It also provides methods that load and
display images, and methods that load and play audio clips.

103

Applet extends the AWT class Panel. In turn, Panel extends
Container, which extends Component. These classes provide
support for Java's window-based, graphical interface. Thus, Applet
provides all of the necessary support for window-based activities.

Method Name Description

void destroy() Called by the browser or applet viewer to
inform this applet that it is being reclaimed
and that it should destroy any resources that
it has allocated.

String
getAppletInfo()

Returns information about this applet.

AudioClip

getAudioClip
(URL url)

Returns the AudioClip object specified by
the URL argument.

Image

getImage(URL url)

Returns an Image object that can then be
painted on the screen.

String getParameter

(String name)

Returns the value of the named parameter
in the HTML tag.

String[][]
getParameterInfo()

Returns information about the parameters
that are understood by this applet.

void init() Called by the browser or applet viewer to
inform this applet that it has been loaded
into the system.

void play(URL url) Plays the audio clip at the specified absolute
URL.

void play(URL url,
String name)

Plays the audio clip given the URL and a
specifier that is relative to it.

void
showStatus(String
msg)

Requests that the argument string be
displayed in the "status window".

void start() Called by the browser or applet viewer to
inform this applet that it should start its
execution.

void stop() Called by the browser or applet viewer to
inform this applet that it should stop its
execution.

104

Advantages of Applets:
 Automatically integrated with HTML; hence, resolved virtually all

installation issues.

 Can be accessed from various platforms and various java-

enabled web browsers.

 Can provide dynamic, graphics capabilities and visualizations

 Implemented in Java, an easy-to-learn OO programming

language

 Alternative to HTML GUI design

 Safe! Because of the security built into the core Java language

and the applet structure, you don’t have to worry about bad

code causing damage to someone’s system

 Can be launched as a standalone web application independent

of the host web server

Disadvantages of Applets:
 Applets can’t run any local executable programs

 Applets can’t talk with any host other than the originating server

 Applets can’t read/write to local computer’s file system

 Applets can’t find any information about the local computer

 All java-created pop-up windows carry a warning message

 Stability depends on stability of the client’s web server

 Performance directly depend on client’s machine

Check Your Progress
1) An applet is a Java program that runs in a _________.

2) Applet extends the AWT class _________.

9.2 DIFFERENCE BETWEEN APPLETS AND

APPLICATION

Although both the Applets and stand-alone applications are
Java programs, there are certain restrictions are imposed on
Applets due to security concerns:

105

 Applets don’t use the main() method, but when they are load,
automatically call certain methods (init, start, paint,
stop,destroy).

 They are embedded inside a web page and executed in
browsers.

 They cannot read from or write to the files on local computer.

 They cannot communicate with other servers on the network.

 They cannot run any programs from the local computer.

 They are restricted from using libraries from other languages.
The above restrictions ensures that an Applet cannot do any
damage to the local system.

9.3 APPLET LIFE CYCLE

Four methods in the Applet class give you the framework on
which you build any serious applet:

 init: This method is intended for whatever initialization is needed
for your applet. It is called after the param tags inside the applet
tag have been processed.

 start: This method is automatically called after the browser calls
the init method. It is also called whenever the user returns to the
page containing the applet after having gone off to other pages.

 stop: This method is automatically called when the user moves
off the page on which the applet sits. It can, therefore, be called
repeatedly in the same applet.

 destroy: This method is only called when the browser shuts
down normally. Because applets are meant to live on an HTML
page, you should not normally leave resources behind after a
user leaves the page that contains the applet.

 paint: Invoked immediately after the start() method, and also
any time the applet needs to repaint itself in the browser. The
paint() method is actually inherited from the java.awt.

Check Your Progress
1) Start method has to be called explicitly after the browser calls the
init method. (True/False)

2) The applet calls the paint() if it needs to repaint itself in the
browser. (True/False)

106

9.4 CREATING AN APPLET

A "Hello, World" Applet:

The following is a simple applet named HelloWorld.java:

import java.applet.Applet;
import java.awt.Graphics;
public class HelloWorld extends Applet
{

public void paint (Graphics gr)
{

gr.drawString ("Hello World", 25, 50);
}

}

The Applet class provides default implementations of each of
these methods. Those implementations may be overridden as
necessary. The "Hello, World" applet is complete as it stands. The
only method overridden is the paint method.

Invoking an Applet:

An applet may be invoked by embedding directives in an
HTML file and viewing the file through an applet viewer or Java-
enabled browser. The <applet> tag is the basis for embedding an
applet in an HTML file. Below is an example that invokes the "Hello,
World" applet:

<html>
<title>The Hello, World Applet</title>
<hr>
<applet code="HelloWorld.class" width="150" height="150">
</applet>
<hr>
</html>

The code attribute of the <applet> tag is required. It specifies
the Applet class to run. Width and height are also required to
specify the initial size of the panel in which an applet runs. The
applet directive must be closed with a </applet> tag.

Attribute Explanation Example

Code Name of class file Code=“MyApplet.class”

Width Width of applet Width=150

height Height of applet Height=150

107

Codebase Applet’s Directory Codebase=“/applets”

alt Alternate text if
applet not
available

Alt=“menu applet”

name Name of the applet Name=“appletExam”

Align

(top,left,right,bottom)

Justify the applet
with text

Align=“right”

If an applet takes parameters, values may be passed for the
parameters by adding <param> tags between <applet> and
</applet>. The browser ignores text and other tags between the
applet tags.

If an applet resides in a package other than the default, the
holding package must be specified in the code attribute using the
period character (.) to separate package/class components. For
example:
<applet code="mypackage.subpackage.TestApplet.class"

width="320" height="120">

9.5 PASSING PARAMETERS

Getting Applet Parameters:

/ /HelloAppletMsg.java

import java.applet.Applet;

import java.awt.* ;

public class HelloAppletMsg extends Applet

{

String str;

public void init()

{

str = getParameter("Greetings");

if(str = = null)

str = "Hello";

}

public void paint(Graphics g)

{

g.drawString (str,10, 100);

}

}

108

The example above demonstrates how to make an applet
respond to setup parameters specified in the document. This applet
displays a message, the message can be specified as parameters
to the applet within the html document.

The applet viewer or browser calls the init() method of each
applet it runs. The viewer calls init() once, immediately after loading
the applet. The Applet.getParameter() method fetches a parameter
given the parameter's name (the value of a parameter is always a
string). If the value is numeric or other non-character data, the
string must be parsed.

Specifying Applet Parameters:

The following is an example of an HTML file with a
HelloAppletMsg embedded in it. The HTML file specifies parameter
to the applet by means of the <param> tag.

<html><head><title>

Hello World Applet

< /title>< /head>

< body>

< h1>My First Applet on the Web with PARAM TAG!</h1>

<applet CODE= "HelloAppletMsg.class" width= 500 height= 400>

<param NAME= "Greetings" VALUE= "Hello, How are

you?">< /applet>< /body>< /html>

Note: Parameter names are not case sensitive.

Check Your Progress
1) The _____ attribute of the <applet> tag is compulsory.

2) The ________ method fetches a parameter given in the
parameter's name.

9.6 SUMMARY

 An applet is a Java program that runs in a Web browser. An
applet can be a fully functional Java application because it has
the entire Java API at its disposal.

 Applet provides all necessary support for applet execution, such
as starting and stopping. It also provides methods that load and
display images, and methods that load and play audio clips

109

 An applet may be invoked by embedding directives in an HTML
file and viewing the file through an applet viewer or Java-
enabled browser.

 If an applet takes parameters, values may be passed for the
parameters by adding <param> tags between <applet> and
</applet>. The browser ignores text and other tags between the
applet tags.

9.7 UNIT END EXERCISE

1) Write a short note on the Applet class?
2) List the advantages and disadvantages of Applets?
3) Explain the Applet Life Cycle.
4) Write a program to create an applet, which will display a logo on

the screen.

9.8 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &

Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

110

10

GRAPHICS, FONTS & COLOR

Unit Structure

10.0 Objectives

10.1 Graphics class

10.2 Font class

10.3 Working with colors

10.4 Summary

10.5 Unit end exercise

10.6 Further Reading

10.0 OBJECTIVES

The objectives of this chapter are to learn how the graphics
system works in Java: the Graphics class, the coordinate system
used to draw to the screen, and how applets paint and repaint.
Using the Java graphics primitives, including drawing and filling
lines, rectangles, ovals, and arcs. Creating and using fonts,
including how to draw characters and strings. All about color in
Java, including the Color class and how to set the foreground
(drawing) and background color for your applet

10.1 GRAPHIC CLASS

1) The Graphics Coordinate System
To draw an object on the screen, you call one of the drawing

methods available in the Graphics class. All the drawing methods
have arguments representing endpoints, corners, or starting
locations of the object as values in the applet’s coordinate
system—for example, a line starts at the points 10,10 and ends at
the points 20,20.

Java’s coordinate system has the origin (0,0) in the top left
corner. Positive x values are to the right, and positive y values are
down. All pixel values are integers; there are no partial or fractional
pixels. Figure below shows how you might draw a simple square by
using this coordinate system.

111

A graphics context is encapsulated by the Graphics class and is
obtained in two ways:
 It is passed to an applet when one of its various methods, such

as paint() or update(), is called.
 It is returned by the getGraphics() method of Component.

For the remainder of the examples in this chapter, we will be
demonstrating graphics in the main applet window. However, the
same techniques will apply to any other window.

2) Drawing Lines
To draw straight lines, use the drawLine method. drawLine

takes four arguments: the x and y coordinates of the starting point
and the x and y coordinates of the ending point.
public void paint(Graphics g) {

g.drawLine(50,50,100,100);
}

3) Drawing Rectangles
The Java graphics primitives provide not just one, but three

kinds of rectangles:
 Plain rectangles
 Rounded rectangles, which are rectangles with rounded corners
 Three-dimensional rectangles, which are drawn with a shaded

border

For each of these rectangles, you have two methods to
choose from: one that draws the rectangle in outline form, and one
that draws the rectangle filled with color.

To draw a plain rectangle, use either the drawRect or fillRect
methods. Both take four arguments: the x and y coordinates of the
top left corner of the rectangle, and the width and height of the

112

rectangle to draw. For example, the following paint() method draws
two squares:
the left one is an outline and the right one is filled:
public void paint(Graphics g) {

g.drawRect(20,20,60,60);
g.fillRect(120,20,60,60);

}

The drawRoundRect and fillRoundRect methods to draw
rounded rectangles are similar to regular rectangles except that
rounded rectangles have two extra arguments for the width and
height of the angle of the corners.
public void paint(Graphics g) {

g.drawRoundRect(20,20,60,60,10,10);
g.fillRoundRect(120,20,60,60,20,20);

}

Three-dimensional rectangles have four arguments for the x
and y of the start position and the width and height of the rectangle.
The fifth argument is a boolean indicating whether the 3D effect is
to raise the rectangle (true) or indent it (false).
public void paint(Graphics g) {

g.draw3DRect(20,20,60,60,true);
g.draw3DRect(120,20,60,60,false);

}

4) Drawing Ellipses and Circles
To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval().
These methods are shown here:

void drawOval(int top, int left, int width, int height)
void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left
corner is specified by top,left and whose width and height are
specified by width and height. To draw a circle, specify a square as
the bounding rectangle.

public void paint(Graphics g) {
g.drawOval(10, 10, 50, 50);
g.fillOval(100, 10, 75, 50);
g.drawOval(190, 10, 90, 30);
g.fillOval(70, 90, 140, 100);

}
}

5) Drawing Arcs
Arcs can be drawn with drawArc() and fillArc(), shown here:
void drawArc(int top, int left, int width, int height,

int startAngle,int sweepAngle)

113

void fillArc(int top, int left, int width, int height,
int startAngle,int sweepAngle)

The arc is bounded by the rectangle whose upper-left corner
is specified by top,left and whose width and height are specified by
width and height. The arc is drawn from startAngle through the
angular distance specified by sweepAngle. Angles are specified in
degrees. Zero degrees is on the horizontal, at the three o'clock
position. The arc is drawn counterclockwise if sweepAngle is
positive, and clockwise if sweepAngle is negative. Therefore, to
draw an arc from twelve o'clock to six o'clock, the start angle would
be 90 and the sweep angle 180.
public void paint(Graphics g) {

g.drawArc(10, 40, 70, 70, 0, 75);
g.fillArc(100, 40, 70, 70, 0, 75);
g.drawArc(10, 100, 70, 80, 0, 175);
g.fillArc(100, 100, 70, 90, 0, 270);
g.drawArc(200, 80, 80, 80, 0, 180);
}

}

6) Drawing Polygons
Polygons are shapes with an unlimited number of sides. To

draw a polygon, you need a set of x and y coordinates, and the
drawing method then starts at one, draws a line to the second, then
a line to the third, and so on.

As with rectangles, you can draw an outline or a filled
polygon (the drawPolygon and fillPolygon methods, respectively).
You also have a choice of how you want to indicate the list of
coordinates—either as arrays of x and y coordinates or as an
instance of the Polygon class.

Using the first method, the drawPolygon and fillPolygon
methods take three arguments: (1) An array of integers
representing x coordinates, (2) An array of integers representing y
coordinates and (3) An integer for the total number of points. The x
and y arrays should, of course, have the same number of elements.
Here’s an example of drawing a polygon’s outline by using this
method
public void paint(Graphics g) {

int xs[] = { 39,94,97,142,53,58,26 };
int ys[] = { 33,74,36,70,108,80,106 };
int pts = xs.length;
g.drawPolygon(xs,ys,pts);

}

114

Check Your Progress
1) Java’s coordinate system has the origin (0, 0) in the ______
corner.

2) Polygons are shapes with an ________ number of sides.

10.2 FONT CLASS

The Graphics class enables you to print text on the screen,
in conjunction with the Font class. The Font class represents a
given font—its name, style, and point size. Note that the text here is
static text, drawn to the screen once and intended to stay there.

Creating Font Objects
To draw text to the screen, first you need to create an

instance of the Font class. Font objects represent an individual
font—that is, its name, style (bold, italic), and point size. Font
names are strings representing the family of the font, for example,
“TimesRoman”, “Courier”, or “Helvetica”. Font styles are constants
defined by the Font class; you can get to them using class
variables—for example, Font.PLAIN, Font.BOLD, or Font.ITALIC.
Finally, the point size is the size of the font, as defined by the font
itself; the point size may or may not be the height of the characters.

To create an individual font object, use these three
arguments to the Font class’s new constructor:

Font f = new Font(“TimesRoman”, Font.BOLD, 24);
This example creates a font object for the TimesRoman BOLD font,
in 24 points. Note that like most Java classes, you have to import
this class before you can use it.

//Example to Display different styles of text
import java.awt.Font;
import java.awt.Graphics;
public class ManyFonts extends java.applet.Applet
{
public void paint(Graphics g)
{
Font f = new Font(“TimesRoman”, Font.PLAIN, 18);
Font fb = new Font(“TimesRoman”, Font.BOLD, 18);
Font fi = new Font(“TimesRoman”, Font.ITALIC, 18);
Font fbi = new Font(“TimesRoman”, Font.BOLD + Font.ITALIC, 18);

g.setFont(f);
g.drawString(“This is a plain font”, 10, 25);

g.setFont(fb);
g.drawString(“This is a bold font”, 10, 50);

115

g.setFont(fi);
g.drawString(“This is an italic font”, 10, 75);

g.setFont(fbi);
g.drawString(“This is a bold italic font”, 10, 100);
}
}

10.3 WORKING WITH COLORS

Java provides methods and behaviors for dealing with color
in general through the Color class, and also provides methods for
setting the current foreground and background colors so that you
can draw with the colors you created.

Java’s abstract color model uses 24-bit color, wherein a
color is represented as a combination of red, green, and blue
values. Each component of the color can have a number between 0
and 255. 0,0,0 is black, 255,255,255 is white, and Java can
represent millions of colors between as well.

Using Color Objects
To draw an object in a particular color, you must create an instance
of the Color class to represent that color. The Color class defines a
set of standard color objects, stored in class variables that enable
you quickly to get a color object for some of the more popular
colors. For example, Color.red gives you a

Color object representing red (RGB values of 255, 0, and 0),
Color.white gives you a white color (RGB values of 255, 255, and
255), and so on.

Standard colors.
Color Name RGB Value
Color.white 255,255,255
Color.black 0,0,0
Color.gray 128,128,128
Color.darkGray 64,64,64
Color.red 255,0,0
Color.green 0,255,0
Color.blue 0,0,255
Color.yellow 255,255,0

If the color you want to draw in is not one of the standard
color objects, fear not. You can create a color object for any
combination of red, green, and blue, as long as you have the
values of the color you want. Just create a new color object:

Color c = new Color(140,140,140);

116

This line of Java code creates a color object representing a
dark grey. You can use any combination of red, green, and blue
values to construct a color object.

Testing and Setting the Current Colors
To draw an object or text using a color object, you have to

set the current color to be that color object, just as you have to set
the current font to the font in which you want to draw. Use the
setColor method (a method for Graphics objects) to do this:

g.setColor(Color.green);

After setting the current color, all drawing operations will
occur in that color.

In addition to setting the current color for the graphics
context, you can also set the background and foreground colors for
the applet itself by using the setBackground and setForeground
methods. Both of these methods are defined in the
java.awt.Component class. The setBackground method sets the
background color of the applet, which is usually a dark grey. It
takes a single argument, a color object:

setBackground(Color.white);

The setForeground method also takes a single color as an
argument, and affects everything that has been drawn on the
applet, regardless of the color in which it has been drawn. You can
use setForeground to change the color of everything in the applet
at once, rather than having to redraw everything:

setForeground(Color.black);

Check Your Progress
1) A Font objects represent all fonts. (True/False)

2) Java’s abstract color model uses 256-bit color. (True/False)

10.4 SUMMARY

 A graphics context is encapsulated by the Graphics class and
can be obtained by one of the methods: update(), paint() and
getGraphics().

 To draw straight lines, use the drawLine(). To draw a plain
rectangle, use either the drawRect() or fillRect(). To draw an
ellipse, use drawOval(). Arcs can be drawn with drawArc() and
fillArc().

117

 The Font class represents a given font—its name, style, and
point size. Java’s abstract color model uses 24-bit color,
wherein a color is represented as a combination of red, green,
and blue values

10.5 UNIT END EXERCISE

1) Write a short note on Graphics Coordinate System?

2) How to create a Font object?

3) Explain with an example how different Colors are created?

4) Write an applet by giving different colors to display (i) a
rectangle inside circle, (ii) circle inside rectangle, (iii) a tangent
to a circle, (iv) two intersecting tangents to a circle

5) Write an applet to display a) a face of a person. b) a slick
person standing on a table. And c) the lines intersecting at one
point of different colors.

10.6 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &

Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

118

11

AWT CONTROLS

Unit Structure:

11.0 Objectives

11.1 AWT Containers

11.2 AWT Controls

11.3 Summary

11.4 Unit end exercise

11.5 Further Reading

11.0 OBJECTIVES

The objectives of this chapter are to learn the basics of
AWT, understand the various containers available and use the user
interface controls provided in the java.awt package.

11.1 AWT CONTAINERS

The Java programming language provides a class library
called the Abstract Window Toolkit (AWT) that contains a number
of common graphical widgets. You can add these widgets to your
display area and position them with a layout manager.

119

The above diagram shows most of the the class heirarchy of
the AWT (Abstract Windows Toolkit), which comes as part of the
core Java language (java.awt package and sub-packages.)

AWT Basics

All graphical user interface objects stem from a common
superclass, Component. To create a Graphical User Interface
(GUI), you add components to a Container object. Because a
Container is also a Component, containers may be nested
arbitrarily.

Each AWT component uses native code to display itself on
your screen. When you run a Java application under Microsoft
Windows, buttons are really Microsoft Windows buttons. When you
run the same application on a Macintosh, buttons are really
Macintosh buttons.

1) Component

At the top of the AWT hierarchy is the Component class.
Component is an abstract class that encapsulates all of the
attributes of a visual component. All user interface elements that
are displayed on the screen and that interact with the user are
subclasses of Component. It defines public methods that are
responsible for managing events, such as mouse and keyboard
input, positioning and sizing the window, and repainting. A
Component object is responsible for remembering the current

120

foreground and background colors and the currently selected text
font.

A component is an object having a graphical representation
that can be displayed on the screen and that can interact with the
user. Examples of components are the buttons, checkboxes, and
scrollbars of a typical graphical user interface. Class Component
can also be extended directly to create a lightweight component. A
lightweight component is a component that is not associated with a
native opaque window.

2) Container

The Container class is a subclass of Component. It has
additional methods that allow other Component objects to be
nested within it. Other Container objects can be stored inside of a
Container This makes for a multileveled containment system. A
container is responsible for laying out any components that it
contains. It does this through the use of various layout managers

Container is a generic Abstract Window Toolkit(AWT)
container object is a component that can contain other AWT
components. Components added to a container are tracked in a
list. The order of the list will define the components' front-to-back
stacking order within the container. If no index is specified when
adding a component to a container, it will be added to the end of
the list.

3) Panel

Panel is the simplest container class. A panel provides
space in which an application can attach any other component,
including other panels. The default layout manager for a panel is
the FlowLayout layout manager.

The Panel class is a concrete subclass of Container. It
doesn't add any new methods; it simply implements Container. A
Panel may be thought of as a recursively nestable, concrete screen
component. In essence, a Panel is a window that does not contain
a title bar, menu bar, or border. Other components can be added
to a Panel object by its add() method. Once these components
have been added, you can position and resize them manually using
the setLocation(), setSize(), or setBounds() methods defined by
Component.

4) Window

A Window object is a top-level window with no borders and no
menubar. The default layout for a window is BorderLayout. A

121

window must have a frame, dialog, or another window defined as
its owner when it's constructed.

A top-level window is not contained within any other object; it
sits directly on the desktop. Generally, you won't create Window
objects directly. Instead, you will use a subclass of Window called
Frame.

1) Frame

A Frame is a top-level window with a title and a border. The size
of the frame includes any area designated for the border. Frame
encapsulates what is commonly thought of as a "window." It is a
subclass of Window and has a title bar, menu bar, borders, and
resizing corners. When a Frame window is created by a program
rather than an applet, a normal window is created.

2) Canvas

Canvas encapsulates a blank window upon which you can
draw. A Canvas component represents a blank rectangular area of
the screen onto which the application can draw or from which the
application can trap input events from the user. An application must
subclass the Canvas class in order to get useful functionality such
as creating a custom component. The paint method must be
overridden in order to perform custom graphics on the canvas.

Check Your Progress
1) Each AWT component uses _______ code to display itself on
your screen.

2) The Container class is a subclass of ________.

11.2 AWT CONTROLS

All AWT components extend class Component. Think of
Component as the "root element" for AWT. Having this single class
is rather useful, as the library designers can put a lot of common
code into it. Next we examine each of the AWT components below.
Most, but not all, directly extend Component.

1) Label

A Label object is a component for placing text in a container.
A label displays a single line of read-only text. The text can be
changed by the application, but a user cannot edit it directly. It is
usually used to help indicate what other parts of the GUI do, such
as the purpose of a neighboring text field.

122

Constructor Summary
 Label(String text) - Constructs a new label with the specified

string of text, left justified.
 Label(String text, int alignment) - Constructs a new label that

presents the specified string of text with the specified alignment.

Method Summary
 String getText() - Gets the text of this label.
 void setText(String text) - Sets the text for this label to the

specified text.

Example:
import java.awt.*;
import java.applet.Applet;

public class LabelTest extends Applet {
public void init() {
add(new Label("A label"));
// right justify next label
add(new Label("Another label", Label.RIGHT));

}
}

2) Buttons

A Button has a single line label and may be "pushed" with a
mouse click. This class creates a labeled button. The application
can cause some action to happen when the button is pushed. The
gesture of clicking on a button with the mouse is associated with
one instance of ActionEvent, which is sent out when the mouse is
both pressed and released over the button.

Constructor Summary
 Button() - Constructs a Button with no label.
 Button(String label) - Constructs a Button with the specified

label.

Method Summary

 void addActionListener(ActionListener l) - Adds the specified
action listener to receive action events from this button.

 String getActionCommand() - Returns the command name of
the action event fired by this button.

 String getLabel() - Gets the label of this button.

 void removeActionListener(ActionListener l) - Removes the
specified action listener so that it no longer receives action
events from this button.

123

 void setActionCommand(String command) - Sets the command
name for the action event fired by this button.

 void setLabel(String label) - Sets the button's label to be the
specified string.

Example:
import java.awt.*;
import java.applet.Applet;

public class ButtonTest extends Applet {
public void init() {
Button button = new Button("OK");
add(button);

}
}

3) TextField

A TextField object is a text component that allows for the
editing of a single line of text. Every time the user types a key in the
text field, one or more key events are sent to the text field. A
TextField is a scrollable text display object with one row of
characters. The preferred width of the field may be specified during
construction and an initial string may be specified.

Constructor Summary

 TextField() - Constructs a new text field.

 TextField(int columns) - Constructs a new empty text field with
the specified number of columns.

 TextField(String text) - Constructs a new text field initialized with
the specified text.

 TextField(String text, int columns) - Constructs a new text field
initialized with the specified text to be displayed, and wide
enough to hold the specified number of columns.

Method Summary

 void addActionListener(ActionListener l) - Adds the specified
action listener to receive action events from this text field.

 void removeActionListener(ActionListener l) - Removes the
specified action listener so that it no longer receives action
events from this text field.

 String getText() - Returns the text that is presented by this text
component.

124

 void setText(String t) - Sets the text that is presented by this text
component to be the specified text.

Example:
import java.awt.*;
import java.applet.Applet;

public class TextFieldSimpleTest extends Applet {
public void init() {
TextField f1 = new TextField("type something");
add(f1);

}
}

4) TextArea

A TextArea is a multi-row text field that displays a single
string of characters, where newline ends each row. The width and
height of the field is set at construction, but the text can be scrolled
up/down and left/right. There is a four-argument constructor that
accepts a fourth parameter of a scrollbar policy. The different
settings are the class constants: SCROLLBARS_BOTH,
SCROLLBARS_HORIZONTAL_ONLY, SCROLLBARS_NONE, and
SCROLLBARS_VERTICAL_ONLY. When the horizontal (bottom)
scrollbar is not present, the text will wrap.

Constructor Summary

 TextArea() - Constructs a new text area with the empty string as
text.

 TextArea(int rows, int columns) - Constructs a new text area
with the specified number of rows and columns and the empty
string as text.

 TextArea(String text) - Constructs a new text area with the
specified text.

 TextArea(String text, int rows, int columns, int scrollbars) -
Constructs a new text area with the specified text, and with the
rows, columns, and scroll bar visibility as specified.

Method Summary

 void append(String str) - Appends the given text to the text
area's current text.

 int getColumns() - Returns the number of columns in this text
area.

 int getRows() - Returns the number of rows in the text area.

125

 void setColumns(int columns) - Sets the number of columns for
this text area.

 void setRows(int rows) - Sets the number of rows for this text
area.

 void insert(String str, int pos) - Inserts the specified text at the
specified position in this text area.

 void replaceRange(String str, int start, int end) - Replaces text
between the indicated start and end positions with the specified
replacement text.

 String getText() - Returns the text that is presented by this text
component.

 void setText(String t) - Sets the text that is presented by this text
component to be the specified text.

Example:

import java.awt.*;

import java.applet.Applet;

public class TextAreaScroll extends Applet {

String s =

"This is a very long message " +

"It should wrap when there is " +

"no horizontal scrollbar.";

public void init() {

add(new TextArea (s, 4, 15,

TextArea.SCROLLBARS_NONE));

add(new TextArea (s, 4, 15,

TextArea.SCROLLBARS_BOTH));

add(new TextArea (s, 4, 15,

TextArea.SCROLLBARS_HORIZONTAL_ONLY));

add(new TextArea (s, 4, 15,

TextArea.SCROLLBARS_VERTICAL_ONLY));

}

}

5) Checkbox

A check box is a graphical component that can be in either
an "on" (true) or "off" (false) state. Clicking on a check box changes
its state from "on" to "off," or from "off" to "on." A Checkbox is a
label with a small pushbutton. The state of a Checkbox is either
true (button is checked) or false (button not checked). The default
initial state is false.

126

Constructor Summary
 Checkbox(String label) - Creates a check box with the specified

label.
 Checkbox(String label, boolean state) - Creates a check box

with the specified label and sets the specified state.

Method Summary

 void addItemListener(ItemListener l) - Adds the specified item
listener to receive item events from this check box.

 String getLabel() - Gets the label of this check box.

 Object[] getSelectedObjects() - Returns an array (length 1)
containing the checkbox label or null if the checkbox is not
selected.

 boolean getState() - Determines whether this check box is in the
"on" or "off" state.

 void removeItemListener(ItemListener l) - Removes the
specified item listener so that the item listener no longer
receives item events from this check box.

 void setLabel(String label) - Sets this check box's label to be the
string argument.

 void setState(boolean state) - Sets the state of this check box to
the specified state.

Example:

import java.awt.*;

import java.applet.Applet;

public class CheckboxSimpleTest2 extends Applet {

public void init() {

Checkbox m = new Checkbox("Label", true);

add(m);

}

}

6) CheckboxGroup

A CheckboxGroup is used to control the behavior of a group
of Checkbox objects (each of which has a true or false state).
Exactly one of the Checkbox objects is allowed to be true at one
time. Checkbox objects controlled with a CheckboxGroup are
usually referred to as "radio buttons".

127

Constructor Summary

 Checkbox(String label, boolean state, CheckboxGroup group) -
Constructs a Checkbox with the specified label, set to the
specified state, and in the specified check box group.

 Checkbox(String label, CheckboxGroup group, boolean state) -
Creates a check box with the specified label, in the specified
check box group, and set to the specified state.

Method Summary

 Checkbox getSelectedCheckbox() - Gets the current choice
from this check box group.

 void setSelectedCheckbox(Checkbox box) - Sets the currently
selected check box in this group to be the specified check box.

 String toString() - Returns a string representation of this check
box group, including the value of its current selection.

Example:

import java.awt.*;

import java.applet.Applet;

public class CheckboxGroupTest extends Applet {

public void init() {

// create button controller

CheckboxGroup cbg = new CheckboxGroup();

Checkbox cb1 =

new Checkbox("Show lowercase only", cbg, true);

Checkbox cb2 =

new Checkbox("Show uppercase only", cbg, false);

add(cb1);

add(cb2);

}

}

7) Choice

Choice objects are drop-down lists. The visible label of the
Choice object is the currently selected entry of the Choice. The
Choice class presents a pop-up menu of choices. The current
choice is displayed as the title of the menu.

128

Constructor Summary
 Choice() - Creates a new choice menu.

Method Summary

 void add(String item) - Adds an item to this Choice menu.

 void addItemListener(ItemListener l) - Adds the specified item
listener to receive item events from this Choice menu.

 String getItem(int index) - Gets the string at the specified index
in this Choice menu.

 int getItemCount() - Returns the number of items in this Choice
menu.

 int getSelectedIndex() - Returns the index of the currently
selected item.

 String getSelectedItem() - Gets a representation of the current
choice as a string.

 void insert(String item, int index) - Inserts the item into this
choice at the specified position.

 void remove(int position) - Removes an item from the choice
menu at the specified position.

 void remove(String item) - Removes the first occurrence of item
from the Choice menu.

 void removeAll() - Removes all items from the choice menu.

Example:

import java.awt.*;

import java.applet.Applet;

public class ChoiceSimpleTest extends Applet {

public void init() {

Choice rgb = new Choice();

rgb.add("Red");

rgb.add("Green");

rgb.add("Blue");

add(rgb);

}

}

129

8) List

A List is a scrolling list box that allows you to select one or
more items. Multiple selections may be used by passing true as the
second argument to the constructor. Clicking on an item that isn't
selected selects it. Clicking on an item that is already selected
deselects it. When an item is selected or deselected by the user,
AWT sends an instance of ItemEvent to the list. When the user
double-clicks on an item in a scrolling list

Constructor Summary

 List() - Creates a new scrolling list.

 List(int rows) - Creates a new scrolling list initialized with the
specified number of visible lines.

 List(int rows, boolean multipleMode) - Creates a new scrolling
list initialized to display the specified number of rows.

Method Summary

 void add(String item) - Adds the specified item to the end of
scrolling list.

 void add(String item, int index) - Adds the specified item to the
the scrolling list at the position indicated by the index.

 void addActionListener(ActionListener l) - Adds the specified
action listener to receive action events from this list.

 void addItemListener(ItemListener l) - Adds the specified item
listener to receive item events from this list.

 String getItem(int index) - Gets the item associated with the
specified index.

 int getItemCount() - Gets the number of items in the list.

 int[] getSelectedIndexes() - Gets the selected indexes on the
list.

 String getSelectedItem() - Gets the selected item on this
scrolling list.

 String[] getSelectedItems() - Gets the selected items on this
scrolling list.

 void remove(int position) - Remove the item at the specified
position from this scrolling list.

 void remove(String item) - Removes the first occurrence of an
item from the list.

 void removeAll() - Removes all items from this list.

130

Example:

import java.awt.*;

import java.applet.Applet;

public class ListSimpleTest extends Applet {

public void init() {

List list = new List(5, false);

list.add("Seattle");

list.add("Washington");

list.add("New York");

list.add("Chicago");

list.add("Miami");

list.add("San Jose");

list.add("Denver");

add(list);

}

}

Check Your Progress
1) A label displays a multiple lines of read-only text. (True/False)

2) A TextField is a scrollable text display object with one row of
characters. (True/False)

11.3 SUMMARY

 The Java programming language provides a class library called
the Abstract Window Toolkit (AWT) that contains a number of
common graphical widgets.

 A component is an object having a graphical representation that
can be displayed on the screen and that can interact with the
user.

 The Container class is a subclass of Component. It has
additional methods that allow other Component objects to be
nested within it.

 Panel is the simplest container class. A panel provides space in
which an application can attach any other component, including
other panels.

 A Label object is a component for placing text in a container. A
label displays a single line of read-only text. A Button has a
single line label and may be "pushed" with a mouse click.

131

 A TextField object is a text component that allows for the editing
of a single line of text. A TextArea is a multi-row text field that
displays a single string of characters, where newline ends each
row.

 A check box is a graphical component that can be in either an
"on" (true) or "off" (false) state. A CheckboxGroup is used to
control the behavior of a group of Checkbox objects (each of
which has a true or false state).

 Choice objects are drop-down lists. The visible label of the
Choice object is the currently selected entry of the Choice. A
List is a scrolling list box that allows you to select one or more
items.

11.4 UNIT END EXERCISE

1) Write a short note on Component Class?
2) Explain with an example:

a. Label
b. Buttons
c. TextArea
d. Checkbox
e. List

11.5 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

132

12

LAYOUT & EVENT HANDLING

Unit Structure:

12.0 Objectives

12.1 Layout Managers

12.2 Delegation Event Model

12.3 Event Classes and Listeners

12.4 Summary

12.5 Unit end exercise

12.6 Further Reading

12.0 OBJECTIVES

The objectives of this chapter are to learn the various layout
managers which are available to make the user interface to look
good, also we will learn about the Events and Event Listener which
are used for the user interaction.

12.1 LAYOUT MANAGERS

A layout manager is an object that implements the
LayoutManager interface and determines the size and position of
the components within a container. Although components can
provide size and alignment hints, a container's layout manager has
the final say on the size and position of the components within the
container. A layout manager automatically arranges all the controls
within a window. They adjust for factors such as different scree
resoulution, platform to platform variations in the apperance of
components and font sizes.

In the java platform 2 interfaces – LayoutManager and
LayoutManager2 – provides the base for all layout manager
classes. The LayoutManager2 is an extension of LayoutManager. It
has additional layout management methods to support layout
constraints that are typically used in more complicated layout
management. The layout manager is set by the method
setLayout(). If for a Container no call to the setLayout() is made
then the default LayoutManager is used.

133

FlowLayout

The FlowLayout class puts components in a row, sized at
their preferred size. If the horizontal space in the container is too
small to put all the components in one row, the FlowLayout class
uses multiple rows. If the container is wider than necessary for a
row of components, the row is, by default, centered horizontally
within the container. To specify that the row is to aligned either to
the left or right, use a FlowLayout constructor that takes an
alignment argument. Another constructor of the FlowLayout class
specifies how much vertical or horizontal padding is put around the
components.

Constructor Purpose

FlowLayout()
Constructs a new FlowLayout object with a
centered alignment and horizontal and vertical
gaps with the default size of 5 pixels.

FlowLayout(int
align)

Creates a new flow layout manager with the
indicated alignment and horizontal and vertical
gaps with the default size of 5 pixels. The
alignment argument can be
FlowLayout.LEADING, FlowLayout.CENTER, or
FlowLayout.TRAILING. When the FlowLayout
object controls a container with a left-to right
component orientation (the default), the
LEADING value specifies the components to be
left-aligned and the TRAILING value specifies
the components to be right-aligned.

FlowLayout (int
align, int hgap, int
vgap)

Creates a new flow layout manager with the
indicated alignment and the indicated horizontal
and vertical gaps. The hgap and vgap
arguments specify the number of pixels to put
between components.

Example:

import java.awt.*;

import java.applet.*;

//<applet code=FlowDemo height=320 width=140></applet>

public class FlowDemo extends Applet

{

Label l1,l2;

TextField name;

TextArea add;

Button ok,cancel;

134

public void init()

{

setLayout(new FlowLayout(FlowLayout.CENTER));

l1=new Label("Name :");

l2=new Label("Address :");

name=new TextField(10);

add=new TextArea(10,8);

ok=new Button("Ok");

cancel=new Button("Cancel");

add(l1); add(name);

add(l2); add(add);

add(ok); add(cancel);

}//init

}//class

BorderLayout

A border layout lays out a container, arranging and resizing
its components to fit in five regions: north, south, east, west, and
center. Each region may contain no more than one component, and
is identified by a corresponding constant: NORTH, SOUTH, EAST,
WEST, and CENTER. When adding a component to a container
with a border layout, use one of these five constants, for example:

JPanel p = new JPanel();
p.setLayout(new BorderLayout());
p.add(new Button("Okay"), BorderLayout.SOUTH);

The components are laid out according to their preferred
sizes and the constraints of the container's size. The NORTH and
SOUTH components may be stretched horizontally; the EAST and
WEST components may be stretched vertically; the CENTER
component may stretch both horizontally and vertically to fill any
space left over.

Constructor or Method Purpose

BorderLayout(int
horizontalGap, int
verticalGap)

Defines a border layout with specified
gaps between components.

setHgap(int)
Sets the horizontal gap between
components.

setVgap(int)
Sets the vertical gap between
components

135

Example:

import java.awt.*;

import java.applet.*;

//<applet code=BorderDemo height=300 width=300></applet>

public class BorderDemo extends Applet

{

public void init()

{

setLayout(new BorderLayout());

add(new Button("Top Button"),BorderLayout.NORTH);

add(new Label("Footer",Label.CENTER), BorderLayout.SOUTH);

add(new Button("Right"),BorderLayout.EAST);

add(new Button("Left"),BorderLayout.WEST);

add(new TextArea("XYZ",55,55),BorderLayout.CENTER);

}

public Insets getInsets()

{

return new Insets(20,20,20,20);

}

}

GridLayout

The GridLayout class is a layout manager that lays out a
container's components in a rectangular grid. The container is
divided into equal-sized rectangles, and one component is placed
in each rectangle. When both the number of rows and the number
of columns have been set to non-zero values, either by a
constructor or by the setRows and setColumns methods, the
number of columns specified is ignored. Instead, the number of
columns is determined from the specified number or rows and the
total number of components in the layout. So, for example, if three
rows and two columns have been specified and nine components
are added to the layout, they will be displayed as three rows of
three columns. Specifying the number of columns affects the layout
only when the number of rows is set to zero.

136

Constructor Purpose

GridLayout(int rows, int
cols)

Creates a grid layout with the specified
number of rows and columns. All
components in the layout are given equal
size. One, but not both, of rows and cols
can be zero, which means that any
number of objects can be placed in a row
or in a column.

GridLayout(int rows, int
cols, int hgap, int vgap)

Creates a grid layout with the specified
number of rows and columns. In addition,
the horizontal and vertical gaps are set to
the specified values. Horizontal gaps are
places between each of columns.
Vertical gaps are placed between each of
the rows.

Example:

import java.awt.*;

import java.applet.*;

//<applet code=GridDemo height=500 width=500></applet>

public class GridDemo extends Applet

{

public void init()

{

setLayout(new GridLayout(10,10));

setFont(new Font("sanserif",Font.BOLD,24));

for(int i=1;i<=10;i++)

{

for(int j=1;j<=10;j++)

{

add(new Button(""+i*j));

}//for2

}//for1

}//init

}//class

Check Your Progress
1) The LayoutManager2 is an extension of _________.

2) A border layout lays out a container and its components to fit in
_____ regions.

137

12.2 DELEGATION EVENT MODEL

A source generates an event and sends it to one or more
listeners. The listener waits until it recieves an event notification,
once recieved the listener processes the events and then returns. A
user interface element is able to delegate the processing of an
event to a separate piece of code. In the delegation event model
listeners must register with a source in order to recieve an event
notification. Here notifications are only send to listeners that want to
receive them.

Events :

An event is an object that describes a state change in a
source. It can be generated as a consequence of a person
interacting with the elements in a GUI. E.g pressing a button
(ActionEvent), clicking a mouse (MouseEvent), entering a character
(KeyEvent) etc.

Event Source :

A source is an object that generates an event. This occurs
when the internal state of that object changes. Source may
generate more than one type of event. A source must register in
order for the listeners to recieve notifications about a specific type
of event. The general form is

public void addTypeListener(TypeListener tl)

Here type is the name of the event and tl is reference to the
event listener. A source must also provide a method that allows a
listener to unregister in a specific type of event. the general form is

public void removeTypeListener(TypeListener tl).

Event Listeners :
A listener is an object that is notified when an event occurs. It

has two major requirements:
 It must have been registered with one or more sources t

recieve notification.
 It must implement methods to recieve and process these

notifications.

12.3 EVENT CLASSES AND LISTENERS

EventObject : EventObject is the superclass for all the events. It
contains two methods :

 getSource() – which returns the source of an event.
 toString() – which returns the string equivalent of the event.

138

1) ActionEvent and ActionListener

Action listeners are probably the easiest — and most
common — event handlers to implement. You implement an action
listener to define what should be done when an user performs
certain operation.

An action event occurs, whenever an action is performed by
the user. Examples: When the user clicks a button, chooses a
menu item, presses Enter in a text field. The result is that an
actionPerformed message is sent to all action listeners that are
registered on the relevant component.

The ActionListener Interface
Because ActionListener has only one method, it has no

corresponding adapter class.

Method Purpose

actionPerformed(actionEvent)
Called just after the user performs
an action.

The ActionEvent Class

Method Purpose

String
getActionCommand()

Returns the string associated with this
action. Most objects that can fire action
events support a method called
setActionCommand that lets you set this
string.

int getModifiers()

Returns an integer representing the
modifier keys the user was pressing when
the action event occurred. You can use
the ActionEvent-defined constants
SHIFT_MASK, CTRL_MASK,
META_MASK, and ALT_MASK to
determine which keys were pressed. For
example, if the user Shift-selects a menu
item, then the following expression is
nonzero: actionEvent.getModifiers() &
ActionEvent.SHIFT_MASK

Object getSource() Returns the object that fired the event.

Example:Write a program with three buttons on click of which a
message should be displayed.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

139

//<applet code=ActionDemo height=300 width=300></applet>

public class ActionDemo extends Applet

implements ActionListener

{

String msg="";

public ActionDemo()

{

Button b1=new Button("Yes");

Button b2=new Button("No");

Button b3=new Button("Undecided");

setLayout(new FlowLayout());

add(b1);

add(b2);

add(b3);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

}

public void actionPerformed(ActionEvent e)

{

String str=e.getActionCommand();

if(str.equals("Yes"))

msg = "You have clicked Yes";

else if(str.equals("No"))

msg = "You have clicked No";

else

msg = "You have clicked Undecided";

repaint();

}

public void paint(Graphics g)

{

g.drawString(msg,20,100);

}

}

2) FocusEvent and FocusListener

Focus events are fired whenever a component gains or
loses the keyboard focus. This is true whether the change in focus
occurs through the mouse, the keyboard, or programmatically.

140

The FocusListener Interface
The corresponding adapter class is FocusAdapter.

Method Purpose

focusGained(FocusEvent)
Called just after the listened-to
component gets the focus.

focusLost(FocusEvent)
Called just after the listened-to
component loses the focus.

The FocusEvent API

Method Purpose

boolean isTemporary()
Returns the true value if a focus-lost or
focus-gained event is temporary.

Component
getComponent()

Returns the component that fired the
focus event.

3) ItemEvent and ItemListener

Item events are fired by components that implement the
ItemSelectable interface. Generally, ItemSelectable components
maintain on/off state for one or more items. The AWT components
that fire item events include buttons like check boxes, check menu
items, toggle buttons etc...and combo boxes.

The ItemListener Interface
Because ItemListener has only one method, it has no
corresponding adapter class.

Method Purpose

itemStateChanged(ItemEvent)
Called just after a state change in
the listened-to component.

The ItemEvent Class

Method Purpose

Object getItem()

Returns the component-specific
object associated with the item
whose state changed. Often this is a
String containing the text on the
selected item.

ItemSelectable
getItemSelectable()

Returns the component that fired the
item event. You can use this instead
of the getSource method.

int getStateChange()

Returns the new state of the item.
The ItemEvent class defines two
states: SELECTED and
DESELECTED.

141

Example:Write an application for Pizza Order. Fields : Crust,
Toppings, Eat In or Take Away.

import java.awt.*;

import java.awt.event.*;

public class PizzaOrder extends Frame implements

ActionListener,ItemListener

{

Label lblString;

Button ok;

Checkbox c1,c2;

Checkbox ch1,ch2,ch3;

Label l1,l2;

TextField t1;

Choice cob1;

String cstr = "";

CheckboxGroup cbg;

public PizzaOrder()

{

setLayout(new FlowLayout());

lblString=new Label("Your Choice is ==>");

ok = new Button("OK");

cbg = new CheckboxGroup();

c1 = new Checkbox("Thick Crust", true, cbg);

c2 = new Checkbox("Thin Crust", false, cbg);

l1 = new Label("Name");

t1 = new TextField(20);

cob1 = new Choice();

cob1.addItem("Take Away");

cob1.addItem("Eat");

ch1 = new Checkbox("Onion");

ch2 = new Checkbox("Tomato");

ch3 = new Checkbox("Chees");

add(l1); add(t1);

add(cob1);

Panel p1 = new Panel();

p1.add(c1); p1.add(c2);

add(p1);

add(ch1); add(ch2); add(ch3);

142

add(ok);

add(lblString);

ok.addActionListener(this);

ch1.addItemListener(this);

ch2.addItemListener(this);

ch3.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

Object source = ie.getItemSelectable();

if (source == ch1)

cstr = cstr + "\t"+ ch1.getLabel();

if (source == ch2)

cstr = cstr +"\t"+ ch2.getLabel();

if (source == ch3)

cstr = cstr +"\t"+ ch3.getLabel();

}//itemchanged

public void actionPerformed(ActionEvent ae)

{

String s1 = "Name = " +t1.getText();

s1 = s1 + "\tDelivery = "+ cob1.getSelectedItem();

s1 = s1 + "\tCrust = "

+ cbg.getSelectedCheckbox().getLabel();

s1 = s1 +"\tToppings ="+ cstr;

lblString.setText(s1);

}

public static void main(String args[])

{

PizzaOrder p1 = new PizzaOrder();

p1.setSize(300,300);

p1.setVisible(true);

}//main

}//class

4) The InputEvent Class

The root event class for all component-level input events.
Input events are delivered to listeners before they are processed
normally by the source where they originated. The abstract class

143

InputEvent is a subclass of ComponentEvent and is the superclass
for component input events. Its subclasses are KeyEvent and
MouseEvent.

5) KeyEvent and KeyListener

Key events indicate when the user is typing at the keyboard.
Specifically, key events are fired by the component with the
keyboard focus when the user presses or releases keyboard
keys.Notifications are sent about two basic kinds of key events:

 The typing of a Unicode character
 The pressing or releasing of a key on the keyboard

The first kind of event is called a key-typed event. The
second kind is either a key-pressed or key-released event. In
general, you react to only key-typed events unless you need to
know when the user presses keys that do not correspond to
characters. For example, to know when the user types a Unicode
character — whether by pressing one key such as 'a' or by pressing
several keys in sequence — you handle key-typed events. On the
other hand, to know when the user presses the F1 key, or whether
the user pressed the '3' key on the number pad, you handle key-
pressed events.

The KeyListener Interface

The corresponding adapter class is KeyAdapter.

Method Purpose

keyTyped(KeyEvent)
Called just after the user types a
Unicode character into the listened-to
component.

keyPressed(KeyEvent)
Called just after the user presses a
key while the listened-to component
has the focus.

keyReleased(KeyEvent)
Called just after the user releases a
key while the listened-to component
has the focus.

144

The KeyEvent Class

Method Purpose

int getKeyChar()
Obtains the Unicode character
associated with this event. Only rely
on this value for key-typed events.

int getKeyCode()

Obtains the key code associated with
this event. The key code identifies
the particular key on the keyboard
that the user pressed or released.
The KeyEvent class defines many
key code constants for commonly
seen keys. For example, VK_A
specifies the key labeled A, and
VK_ESCAPE specifies the Escape
key.

String getKeyText(int)
String
getKeyModifiersText(int)

Return text descriptions of the
event's key code and modifier keys,
respectively.

boolean isActionKey()

Returns true if the key firing the
event is an action key. Examples of
action keys include Cut, Copy, Paste,
Page Up, Caps Lock, the arrow and
function keys. This information is
valid only for key-pressed and key-
released events.

6) MouseEvent and Listeners

Mouse events notify when the user uses the mouse to
interact with a component. Mouse events occur when the cursor
enters or exits a component's onscreen area and when the user
presses or releases one of the mouse buttons. Tracking the
cursor's motion involves significantly more system overhead than
tracking other mouse events. That is why mouse-motion events are
separated into Mouse Motion listener type.

The MouseEvent Class

Method Purpose

int getClickCount()

Returns the number of quick,
consecutive clicks the user has made
(including this event). For example,
returns 2 for a double click.

int getX()
int getY()
Point getPoint()

Return the (x,y) position at which the
event occurred, relative to the
component that fired the event.

145

The MouseListener Interface

Method Purpose

mouseClicked(MouseEvent)
Called just after the user clicks the
listened-to component.

mouseEntered(MouseEvent)
Called just after the cursor enters
the bounds of the listened-to
component.

mouseExited(MouseEvent)
Called just after the cursor exits the
bounds of the listened-to
component.

mousePressed(MouseEvent)
Called just after the user presses a
mouse button while the cursor is
over the listened-to component.

mouseReleased(MouseEvent)
Called just after the user releases a
mouse button after a mouse press
over the listened-to component.

Example: Define a class that produces an applet, which
performs a simple animation of drawing a rectangle on double
clicking anywhere on the screen.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

//<applet code=RectDemo height=300 width=300></applet>

public class RectDemo extends Applet implements MouseListener

{

int mx,my;

public void init()

{

addMouseListener(this);

}//init

public void mouseClicked(MouseEvent e)

{

int x,y;

mx=e.getX();

my=e.getY();

repaint();

}

public void mousePressed(MouseEvent e){}

public void mouseEntered(MouseEvent e){}

146

public void mouseExited(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void paint(Graphics g)

{

g.drawRect(mx,my,50,100);

}

}//class

The MouseMotionListener Interface
The corresponding adapter classes are MouseMotionAdapter and
MouseAdapter.

Method Purpose

mouseDragged(MouseEvent)

Called in response to the user
moving the mouse while holding a
mouse button down. This event is
fired by the component that fired the
most recent mouse-pressed event,
even if the cursor is no longer over
that component.

mouseMoved(MouseEvent)

Called in response to the user
moving the mouse with no mouse
buttons pressed. This event is fired
by the component that's currently
under the cursor.

Example: Create an applet that displays the current position of
the mouse in its status bar. e. g. [20,30]. As mouse is moved
these numbers go on changing.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

//<applet code=MouseStatus height=300 width=300></applet>

public class MouseStatus extends Applet

implements MouseMotionListener

{

public void init()

{

addMouseMotionListener(this);

}//init

public void mouseDragged(MouseEvent a){}

public void mouseMoved(MouseEvent e)

{

147

int x,y;

x=e.getX();

y=e.getY();

showStatus("Mouse Coordinates"+x+","+y);

}

}//class

The MouseWheelListener interface

The listener interface for receiving mouse wheel events on a
component. The class that is interested in processing a mouse
wheel event implements this interface. The listener object created
from that class is then registered with a component using the
component's addMouseWheelListener method. A mouse wheel
event is generated when the mouse wheel is rotated. When a
mouse wheel event occurs, that object's mouseWheelMoved
method is invoked.

Method Purpose

mouseWheelMoved(MouseWheelEvent)
Invoked when the mouse
wheel is rotated.

7) TextEvent and TextListener

Instances of this class describe text events. These are
generated by text fields and text areas when characters are entered
by a user or program. TextEvent defines the integer constant
TEXT_VALUE_CHANGED.

The TextEvent Class

Method Purpose

paramString()
Returns a parameter string identifying
this text event.

The TextListener Interface

Method Purpose

textValueChanged(TextEvent)
Invoked when the value of the text
has changed.

8) WindowEvent and WindowListener

When the window listener has been registered on a window
(such as a frame or dialog), window events are fired just after the
window activity or state has occurred. A window is considered as a

148

"focus owner", if this window receives keyboard input. The following
window activities or states can precede a window event:

 Opening a window - Showing a window for the first time.

 Closing a window - Removing the window from the screen.

 Iconifying a window - Reducing the window to an icon on the
desktop.

 Deiconifying a window - Restoring the window to its original
size.

 Focused window - The window which contains the "focus
owner".

 Activated window (frame or dialog) - This window is either
the focused window, or owns the focused window.

 Deactivated window - This window has lost the focus.

 Maximizing the window - Increasing a window's size to the
maximum allowable size, either in the vertical direction, the
horizontal direction, or both directions.

The WindowListener interface defines methods that handle most
window events, such as the events for opening and closing the
window, activation and deactivation of the window, and iconification
and deiconification of the window.

The WindowListener Interface

Method Purpose

windowOpened(WindowEvent)
Called just after the listened-to
window has been shown for the
first time.

windowClosing(WindowEvent)

Called in response to a user
request for the listened-to
window to be closed. To
actually close the window, the
listener should invoke the
window's dispose or
setVisible(false) method.

windowClosed(WindowEvent)
Called just after the listened-to
window has closed.

windowIconified(WindowEvent)
windowDeiconified(WindowEvent)

Called just after the listened-to
window is iconified or
deiconified, respectively.

windowActivated(WindowEvent)
windowDeactivated(WindowEvent)

Called just after the listened-to
window is activated or
deactivated, respectively.
These methods are not sent to

149

windows that are not frames or
dialogs. For this reason, we
prefer the 1.4
windowGainedFocus and
windowLostFocus methods to
determine when a window
gains or loses the focus.

The WindowEvent Class

Method Purpose

Window getWindow()
Returns the window that fired the
event. You can use this instead of
the getSource method.

Example:

import java.awt.*;

import java.awt.event.*;

public class AppFrame extends Frame

implements WindowListener {

public AppFrame(String title) {

super(title);

addWindowListener(this);

}

public void windowClosing(WindowEvent e) {

setVisible(false);

dispose();

System.exit(0);

}

public void windowClosed(WindowEvent e) {}

public void windowDeactivated(WindowEvent e) {}

public void windowActivated(WindowEvent e) {}

public void windowDeiconified(WindowEvent e) {}

public void windowIconified(WindowEvent e) {}

public void windowOpened(WindowEvent e) {}

}

Check Your Progress
1) A source is an object that generates an event. (True/False)

2) InputEvent class is the root event class for all component-level
input events. (True/False)

150

12.4 SUMMARY

 A layout manager is an object that implements the
LayoutManager interface and determines the size and position
of the components within a container.

 The FlowLayout class puts components in a row, sized at their
preferred size. A border layout lays out a container, arranging
and resizing its components to fit in five regions: north, south,
east, west, and center. The GridLayout class is a layout
manager that lays out a container's components in a rectangular
grid.

 An event is an object that describes a state change in a source.
It can be generated as a consequence of a person interacting
with the elements in a GUI. A source is an object that
generates an event. This occurs when the internal state of that
object changes.

12.5 UNIT END EXERCISE

1) Write a short note on BorderLayout?
2) Explain with an example GridLayout?
3) Describe the Event Delegation Model?
4) Explain with an example:

a. ItemEvent and ItemListener
b. MouseEvent and Listeners

5) Write a program to design a simple calculator application.
6) Write a program to accept student data. (Name, Add, Mobile

No. etc)

12.6 FURTHER READING

 Java2: The Complete Reference - by Patrick Naughton &
Herbert Schildt, Fifth Edition

 Programming with Java A primer - by E. Balagurusamy Third
Edition

151

Bibliography:

 The Java Tutorials of Sun Microsystems Inc.

 Java2: The Complete

 Reference - by Patrick Naughton & Herbert Schildt, Fifth

Edition

 Programming with Java A primer - by E. Balagurusamy Third

Edition

 http://java.sun.com

 http://www.roseindia.net

 http://docs.oracle.com

 www.tutorialspoint.com

 www.download.oracle.com

 www.java2s.com

