1

F.Y.B.Sc.(IT)

Syllabus : Fundamentals of Digital Computing

Unit — | Data and Information
Features of Digital Systems, Number Systems-
Decimal, Binary, Octal, Hexadecimal and their inter
conversions, Representation of Data: Signed
Magnitude, one’s complement and two’s complement,
Binary Arithmetic, Fixed point representation and
Floating point representation of numbers.
Codes
BCD, XS-3, Gray code, hamming code, alphanumeric
codes (ASCII, EBCDIC, UNICODE), Error detecting
and error correcting codes.

Unit- Il Boolean Algebra:
Basic gates (AND, OR, NOT gates), Universal gates
(NAND and NOR gates), other gates (XOR, XNOR
gates). Boolean identities, De Morgan Laws.
Karnaugh maps:
SOP and POS forms, Quine McClusky method.

Unit -lll | Combinational Circuits:
Half adder, full adder, code converters, combinational
circuit design, Multiplexers and demultiplexers,
encoders, decoders, Combinational design using mux
and demux.

Unit - IV | Sequential Circuit Design:
Flip flops (RS, Clocked RS, D, JK, JK Master Slave, T,
Counters, Shift registers and their types, Counters:
Synchronous and Asynchronous counters.

Unit- V Computers:
Basic Organisation, Memory: ROM, RAM, PROM,
EPROM, EEPROM, Secondary Memory: Hard Disk
and optical Disk, Cache Memory, I/O devices

Unit -Vl | Operating Systems:

Types (real Time, Single User / Single Tasking, Single
user / Multi tasking, Multi user / Multi tasking, GUI
based OS. Overview of desktop operating systems-
Windows and LINUX.

Text Books:

Modern Digital Electronics by R. P. Jain, 3" Edition, McGraw
Hill

Digital Design and Computer Organisation by Dr. N. S. Gill and
J. B. Dixit, University Science Press

Linux Commands by Bryan Pfaffaenberger BPB Publications
UNIX by Sumitabha Das, TMH

References:

Digital Principles and Applications by Malvino and Leach,
McGrawHill

Introduction to Computers by Peter Norton, McGraw Hill
Introduction to Computers by Balagurusamy

DATA AND INFORMATION

Unit Structure
1.0 Objectives
1.1 Data & Information
1.2 Analog Versus Digital
1.3 Number Systems
1.4 Decimal Verses Binary Number System
1.50ctal & Hexadecimal Number System
1.6 Conversion from Decimal Number System
1.7 Unsigned & Signed Integers
1.8 Signed Integers
1.91's Complement
1.10 2’s Complement
1.11 Binary Arithmetic
1.11.1 Addition
1.11.2 Subtraction
1.11.3 Multiplication
1.11.4 Division
1.11.5 Binary Subtraction Using 1’'s Complement
1.11.6 Binary Subtraction Using 2’s Complement
1.12 Questions
1.13 Further Reading

1.0 OBJECTIVES

After completing this chapter, you will be able to:

% Understand the concept of Data and Information.
% Differentiate between the Analog Verses digital Signals.
Deal with the different number system in arithmetic.
Understand the number system conversions.
» Solve the Arithmetic examples based on Binary arithmetic.

R/

o
0’0
o
0’0

o
*

4

1.1 DATA AND INFORMATION

Data is raw collection of samples. When this raw data is
processed it becomes information. Hence information is processed
data. Information is processed data.

1.2 ANALOG VERSUS DIGITAL

Analog Systems Digital Systems
voltage voltage
| o[1]of1 1,
| __1 | time
Continuous time-varying Discrete signals sampled in time
voltages and/or
Currents
All possible values are — Two possible values
present. . 0V, low, false (logic 0)

. 5V, high, true (logic 1)

— Basic elements of analog | — Basic elements of digital circuits:
circuits: * Logic gates: AND, OR, NOT

. Resistors

. Capacitors

. Inductors

. Transistors

Advantages of Digital Systems
Reproducible results

Relative ease of design
Flexibility and functionality
High speed

Small size

Low cost

Low power

Steadily advancing technology
Programmable logic devices

Digital techniques and systems have the advantages of
being relatively much easier to design and having higher accuracy,
programmability, noise immunity, easier storage of data and ease
of fabrication in integrated circuit form, leading to availability of
more complex functions in a smaller size. The real world, however,
is analogue. Most physical quantities — position, velocity,
acceleration, force, pressure, temperature and flowrate, for

5

example — are analogue in nature. That is why analog variables
representing these quantities need to be digitized or discretized at
the input if we want to benefit from the features and facilities that
come with the use of digital techniques. In a typical system dealing
with analog inputs and outputs, analog variables are digitized at the
input with the help of an analog-to-digital converter block and
reconverted back to analogue form at the output using a digital-to-
analog converter block.

1.3 NUMBER SYSTEMS

The expression of numerical quantities is something we tend
to take for granted. This is both a good and a bad thing in the study
of electronics. It is good, in that we are accustomed to the use and
manipulation of numbers for the many calculations used in
analyzing electronic circuits. On the other hand, the particular
system of notation we have been taught from primary school
onwards is not the system used internally in modern electronic
computing devices and learning any different system of notation
requires some re-examination of deeply ingrained assumptions.
First, we have to distinguish the difference between numbers and
the symbols we use to represent numbers. A number is a
mathematical quantity, usually correlated in electronics to a
physical quantity such as voltage, current, or resistance. There are
many different types of numbers. Here are just a few types, for
example:

WHOLE NUMBERS:
1,2,3,4,56,7,8,9...

INTEGERS:
-41 -31 '21 '11 0, 1, 2, 3, 4 e

IRRATIONAL NUMBERS:
T (approx. 3.1415927), e (approx. 2.718281828),
square root of any prime

REAL NUMBERS:
(All one-dimensional numerical values, negative and positive,
including zero, whole, integer, and irrational numbers)

COMPLEX NUMBERS:3 - j4, 34.5 £20°

Different types of numbers find different application in the
physical world. Whole numbers work well for counting discrete
objects, such as the number of resistors in a circuit. Integers are
needed when negative equivalents of whole numbers are required.

6

Irrational numbers are numbers that cannot be exactly expressed
as the ratio of two integers, and the ratio of a perfect circle's
circumference to its diameter (1) is a good physical example of this.
The non-integer quantities of voltage, current, and resistance that
we're used to dealing with in DC circuits can be expressed as real
numbers, in either fractional or decimal form. For AC circuit
analysis, however, real numbers fail to capture the dual essence of
magnitude and phase angle, and so we turn to the use of complex
numbers in either rectangular or polar form.

If we are to use numbers to understand processes in the
physical world, make scientific predictions, or balance our
checkbooks, we must have a way of symbolically denoting them. In
other words, we may know how much money we have in our
checking account, but to keep record of it we need to have some
system worked out to symbolize that quantity on paper, or in some
other kind of form for record-keeping and tracking. There are two
basic ways we can do this: analog and digital. With analog
representation, the quantity is symbolized in a way that is infinitely
divisible. With digital representation, the quantity is symbolized in a
way that is discretely packaged.

We are familiar with an analog representation of money, and
didn't realize it for what it was. Have you ever seen a fund-raising
poster made with a picture of a thermometer on it, where the height
of the red column indicated the amount of money collected for the

cause? The more money collected, the taller the column of red ink
on the poster.

An analog representation
of a numerical quantity

—Rs. 50000
—R&. 40000
—Rs&. 30000

—Rs. 20000

— Rs. 10000

—Rs8. 0

7

This is an example of an analog representation of a number.
There is no real limit to how finely divided the height of that column
can be made to symbolize the amount of money in the account.
Changing the height of that column is something that can be done
without changing the essential nature of what it is. Length is a
physical quantity that can be divided as small as you would like,
with no practical limit. The slide rule is a mechanical device that
uses the very same physical quantity -- length -- to represent
numbers, and to help perform arithmetical operations with two or
more numbers at a time. It, too, is an analog device.

On the other hand, a digital representation of that same
monetary figure, written with standard symbols (sometimes called
ciphers), looks like this:

Rs. 35,955.38

Unlike the "thermometer" poster with its red column, those
symbolic characters above cannot be finely divided: that particular
combination of ciphers stand for one quantity and one quantity only.
If more money is added to the account (+ $40.12), different symbols
must be used to represent the new balance ($35,995.50), or at
least the same symbols arranged in different patterns. This is an
example of digital representation. The counterpart to the slide rule
(analog) is also a digital device: the abacus, with beads that are
moved back and forth on rods to symbolize numerical quantities:

Slide rule (an analog device)

NUTEMTWTTTR ! 1T Slide

Numerical quantities are represented by
the positioning of the slide.

8

Abacus (a digital device)

Numerical quantities are represented by
the discrete positions of the beads.

Lets contrast these two methods of numerical representation:

ANALOG DIGITAL

Intuitively understood ----------- Requires training to interpret
Infinitely divisible -------------- Discrete

Prone to errors of precision ------ Absolute precision

Interpretation of numerical symbols is something we tend to
take for granted, because it has been taught to us for many years.
However, if you were to try to communicate a quantity of something
to a person ignorant of decimal numerals, that person could still
understand the simple thermometer chart!

The infinitely divisible vs. discrete and precision comparisons
are really flip-sides of the same coin. The fact that digital
representation is composed of individual, discrete symbols (decimal
digits and abacus beads) necessarily means that it will be able to
symbolize quantities in precise steps. On the other hand, an analog
representation (such as a slide rule's length) is not composed of
individual steps, but rather a continuous range of motion. The ability
for a slide rule to characterize a numerical quantity to infinite
resolution is a trade-off for imprecision. If a slide rule is bumped, an
error will be introduced into the representation of the number that
was "entered" into it. However, an abacus must be bumped much
harder before its beads are completely dislodged from their places
(sufficient to represent a different number).

Please don't misunderstand this difference in precision by
thinking that digital representation is necessarily more accurate
than analog. Just because a clock is digital doesn't mean that it will
always read time more accurately than an analog clock, it just
means that the interpretation of its display is less ambiguous.

9

Divisibility of analog versus digital representation can be
further illuminated by talking about the representation of irrational
numbers. Numbers such as 1 are called irrational, because they
cannot be exactly expressed as the fraction of integers, or whole
numbers. Although you might have learned in the past that the
fraction 22/7 can be used for 1T in calculations, this is just an
approximation. The actual number "pi" cannot be exactly expressed
by any finite, or limited, number of decimal places. The digits of 1
go on forever:

3.1415926535897932384

It is possible, at least theoretically, to set a slide rule (or even
a thermometer column) so as to perfectly represent the number T,
because analog symbols have no minimum limit to the degree that
they can be increased or decreased. If my slide rule shows a figure
of 3.141593 instead of 3.141592654, | can bump the slide just a bit
more (or less) to get it closer yet. However, with digital
representation, such as with an abacus, | would need additional
rods (place holders, or digits) to represent 1 to further degrees of
precision. An abacus with 10 rods simply cannot represent any
more than 10 digits worth of the number 1, no matter how | set the
beads. To perfectly represent 1T, an abacus would have to have an
infinite number of beads and rods! The tradeoff, of course, is the
practical limitation to adjusting, and reading, analog symbols.
Practically speaking, one cannot read a slide rule's scale to the
10th digit of precision, because the marks on the scale are too
coarse and human vision is too limited. An abacus, on the other
hand, can be set and read with no interpretational errors at all.

Furthermore, analog symbols require some kind of standard
by which they can be compared for precise interpretation. Slide
rules have markings printed along the length of the slides to
translate length into standard quantities. Even the thermometer
chart has numerals written along its height to show how much
money (in Rupees) the red column represents for any given amount
of height. Imagine if we all tried to communicate simple numbers to
each other by spacing our hands apart varying distances. The
number 1 might be signified by holding our hands 1 inch apart, the
number 2 with 2 inches, and so on. If someone held their hands 17
inches apart to represent the number 17, would everyone around
them be able to immediately and accurately interpret that distance
as 177? Probably not. Some would guess short (15 or 16) and some
would guess long (18 or 19). Of course, fishermen who brag about
their catches don't mind overestimations in quantity!

Perhaps this is why people have generally settled upon
digital symbols for representing numbers, especially whole
numbers and integers, which find the most application in everyday
life. Using the fingers on our hands, we have a ready means of

10

symbolizing integers from 0 to 10. We can make tally marks on
paper, wood, or stone to represent the same quantities quite easily:

5 +5 +3 =13

T Jdl Ml

For large numbers, though, the "tally mark" number system
is too inefficient.

1.4 DECIMAL VERSUS BINARY NUMBER SYSTEMS

Let's count from zero to twenty using four different kinds of
number systems: Roman numerals, decimal and binary:

Decimal Roman Binary Octal Hexadecimal
0 - 0 0 0
1 I 1 1 1
2 I 01 2 2
3 1l 11 3 3
4 v 100 4 4
5 \% 101 5 5
6 VI 110 6 6
7 VI 111 7 7
8 VI 1000 10 8
9 IX 1001 11 9

10 X 1010 12 A
11 XI 1011 13 B
12 XII 1100 14 C
13 X 1101 15 D
14 XV 1110 16 E
15 XV 1110 17 F

The Roman system is not very practical for symbolizing large
numbers. Obviously, place-weighted systems such as decimal and
binary are more efficient for the task. Notice, though, how much
shorter decimal notation is over binary notation, for the same

11

number of quantities. What takes five bits in binary notation only
takes two digits in decimal notation.

This raises an interesting question regarding different
number systems: how large of a number can be represented with a
limited number of cipher positions, or places? With the crude hash-
mark system, the number of places IS the largest number that can
be represented, since one hash mark "place" is required for every
integer step. For place-weighted systems of numeration, however,
the answer is found by taking base of the number system (10 for
decimal, 2 for binary) and raising it to the power of the number of
places. For example, 5 digits in a decimal numeration system can
represent 100,000 different integer number values, from 0 to
99,999 (10 to the 5th power = 100,000). 8 bits in a binary
numeration system can represent 256 different integer number
values, from 0to 11111111 (binary), or 0 to 255 (decimal), because
2 to the 8th power equals 256. With each additional place position
to the number field, the capacity for representing numbers
increases by a factor of the base (10 for decimal, 2 for binary).

An interesting footnote for this topic is the one of the first
electronic digital computers, the Eniac. The designers of the Eniac
chose to represent numbers in decimal form, digitally, using a
series of circuits called "ring counters" instead of just going with the
binary numeration system, in an effort to minimize the number of
circuits required to represent and calculate very large numbers.
This approach turned out to be counter-productive, and virtually all
digital computers since then have been purely binary in design.

To convert a number in binary numeration to its equivalent in
decimal form, all you have to do is calculate the sum of all the
products of bits with their respective place-weight constants. To
illustrate:

Convert 11001101, to decimal form:

bits = 11001101
weight = 16318421
(indecimal 2 4 2 6

notation) 8

The bit on the far right side is called the Least Significant Bit
(LSB), because it stands in the place of the lowest weight (the one's
place). The bit on the far left side is called the Most Significant Bit
(MSB), because it stands in the place of the highest weight (the one
hundred twenty-eight's place). Remember, a bit value of "1" means
that the respective place weight gets added to the total value, and a
bit value of "0" means that the respective place weight does not get
added to the total value. With the above example, we have:

12819 + 6410 + 810 + 410 + 110 =20519

12

If we encounter a binary number with a dot (.), called a
"binary point" instead of a decimal point, we follow the same
procedure, realizing that each place weight to the right of the point
is one-half the value of the one to the left of it (just as each place
weight to the right of a decimal point is one-tenth the weight of the
one to the left of it).

For example:
Convert 101.011, to decimal form:

bits= 101.011
weight= 421 111
(in decimal 1]
notation) 248

4.9 + 119 +0.25;0 +0.125:9 =5.37519

1.5 OCTAL AND HEXADECIMAL NUMBER
SYSTEMS:

Because binary number system requires so many bits to
represent relatively small numbers compared to the economy of the
decimal system, analyzing the numerical states inside of digital
electronic circuitry can be a tedious task. Computer programmers
who design sequences of number codes instructing a computer
what to do would have a very difficult task if they were forced to
work with nothing but long strings of 1's and 0's, the "native
language" of any digital circuit. To make it easier for human
engineers, technicians, and programmers to "speak" this language
of the digital world, other systems of place-weighted number
system have been made which are very easy to convert to and
from binary.

One of those number systems is called octal, because it is a
place-weighted system with a base of eight. Valid ciphers include
the symbols 0, 1, 2, 3, 4, 5, 6, and 7. Each place weight differs from
the one next to it by a factor of eight.

Another system is called hexadecimal, because it is a place-
weighted system with a base of sixteen. Valid ciphers include the
normal decimal symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus six
alphabetical characters A, B, C, D, E, and F, to make a total of
sixteen. As you might have guessed already, each place weight
differs from the one before it by a factor of sixteen.

Let's count again from zero to twenty using decimal, binary,
octal, and hexadecimal to contrast these systems of numbers:

13

Number Decimal Binary Octal Hexadecimal

Zero 0 0 0 0
One 1 1 1 1
Two 2 10 2 2
Three 3 11 3 3
Four 4 100 4 4
Five 5 101 5 5
Six 6 110 6 6
Seven 7 111 7 7
Eight 8 1000 10 8
Nine 9 1001 11 9
Ten 10 1010 12 A
Eleven 11 1011 13 B
Twelve 12 1100 14 C
Thirteen 13 1101 15 D
Fourteen 14 1110 16 E
Fifteen 15 1111 17 F
Sixteen 16 10000 20 10
Seventeen 17 10001 21 11
Eighteen 18 10010 22 12
Nineteen 19 10011 23 13
Twenty 20 10100 24 14

Octal and hexadecimal number systems would be pointless
if not for their ability to be easily converted to and from binary
notation. Their primary purpose in being is to serve as a
"shorthand” method of denoting a number represented
electronically in binary form. Because the bases of octal (eight) and
hexadecimal (sixteen) are even multiples of binary's base (two),
binary bits can be grouped together and directly converted to or
from their respective octal or hexadecimal digits. With octal, the
binary bits are grouped in three's (because 2° = 8), and with
hexadecimal, the binary bits are grouped in four's
(because 2* = 16):

BINARY TO OCTAL CONVERSION
Convert 10110111.1, to octal:
implied zero implied zeros
I |
. 010 110 111 100
Convert each group of bits --- --- -, ---
to its octal equivalent: 2 6 7 4

Answer: 10110111.1, = 267.4g

We had to group the bits in three's, from the binary point left,
and from the binary point right, adding (implied) zeros as necessary
to make complete 3-bit groups. Each octal digit was translated from

the 3-bit binary groups. Binary-to-Hexadecimal conversion is much
the same:

14

BINARY TO HEXADECIMAL CONVERSION
Convert 10110111.1, to hexadecimal:

implied zeros
|l
: 1011 0111 1000
Convert each group of bits =~ ---- ---- | ----
to its hexadecimal equivalent: B 7 8

Answer: 10110111.1, = B7.815

Here we had to group the bits in four's, from the binary point
left, and from the binary point right, adding (implied) zeros as
necessary to make complete 4-bit groups:

Likewise, the conversion from either octal or hexadecimal to
binary is done by taking each octal or hexadecimal digit and
converting it to its equivalent binary (3 or 4 bit) group, then putting
all the binary bit groups together.

Incidentally, hexadecimal notation is more popular, because
binary bit groupings in digital equipment are commonly multiples of
eight (8, 16, 32, 64, and 128 bit), which are also multiples of 4.
Octal, being based on binary bit groups of 3, doesn't work out
evenly with those common bit group sizings.

1.6 CONVERSION FROM DECIMAL NUMBER
SYSTEM

Because octal and hexadecimal number systems have
bases that are multiples of binary (base 2), conversion back and
forth between either hexadecimal or octal and binary is very easy.
Also, because we are so familiar with the decimal system,
converting binary, octal, or hexadecimal to decimal form is relatively
easy (simply add up the products of cipher values and place-
weights). However, conversion from decimal to any of these
"strange" number systems is a different matter.

The method which will probably make the most sense is the
“"trial-and-fit" method, where you try to "fit" the binary, octal, or
hexadecimal notation to the desired value as represented in
decimal form. For example, let's say that | wanted to represent the
decimal value of 87 in binary form. Let's start by drawing a binary
number field, complete with place-weight values:

15

weight = 16318421
(indecimal 2 4 2 6
notation) 8

Well, we know that we won't have a "1" bit in the 128's place,
because that would immediately give us a value greater than 87.
However, since the next weight to the right (64) is less than 87, we
know that we must have a "1" there.

------- Decimal value so far = 6449

weight = 6318421
(indecimal 4 2 6
notation)

If we were to make the next place to the right a "1" as well,
our total value would be 64,9 + 3250, or 965¢. This is greater than
8710, SO we know that this bit must be a "0". If we make the next
(16's) place bit equal to "1," this brings our total value to 6419 +
16109, or 8010, Which is closer to our desired value (8710) without

exceeding it:
101
e Decimal value so far = 8019
weight = 6318421
(indecimal 4 2 6
notation)

By continuing in this progression, setting each lesser-weight
bit as we need to come up to our desired total value without
exceeding it, we will eventually arrive at the correct figure:
1010111
L Decimal value so far = 8719
weight = 6 8421
(indecimal 4
notation)

This trial-and-fit strategy will work with octal and
hexadecimal conversions, too. Let's take the same decimal figure,
8710, and convert it to octal number system:

weight = 681
(indecimal 4
notation)

If we put a cipher of "1" in the 64's place, we would have a
total value of 644 (less than 871). If we put a cipher of "2" in the
64's place, we would have a total value of 128, (greater than 871).
This tells us that our octal number system must start with a "1" in
the 64's place:

16

1
weight = - - - Decimal value so far = 64,9
681
(indecimal 4
notation)

Now, we need to experiment with cipher values in the 8's
place to try and get a total (decimal) value as close to 87 as
possible without exceeding it. Trying the first few cipher options, we
get:

"1"=6410+ 810 = 7210
"2" = 6419+ 1619 = 8019
"3" = 6419 + 2410 = 8819

A cipher value of "3" in the 8's place would put us over the
desired total of 8719, so "2" it is!
12
. - - - Decimal value so far = 8049
weight = 681
(indecimal 4
notation)

Now, all we need to make a total of 87 is a cipher of "7" in the 1's
place:
127
. - - - Decimal value so far = 8719
weight= 6 8 1
(indecimal 4
notation)

Of course, if you were paying attention during the last
section on octal/binary conversions, you will realize that we can
take the binary representation of (decimal) 87,9, which we
previously determined to be 1010111,, and easily convert from that
to octal to check our work:

Implied zeros

I
001 010 111 Binary

1 2 7 Octal

Answer: 1010111, = 127g

17

Can we do decimal-to-hexadecimal conversion the same
way? Sure, but who would want to? This method is simple to
understand, but laborious to carry out. There is another way to do
these conversions, which is essentially the same (mathematically),
but easier to accomplish.

This other method uses repeated cycles of division (using
decimal notation) to break the decimal number system down into
multiples of binary, octal, or hexadecimal place-weight values. In
the first cycle of division, we take the original decimal number and
divide it by the base of the number system that we're converting to
(binary=2 octal=8, hex=16). Then, we take the whole-number
portion of division result (quotient) and divide it by the base value
again, and so on, until we end up with a quotient of less than 1. The
binary, octal, or hexadecimal digits are determined by the
"remainders" left over by each division step. Let's see how this
works for binary, with the decimal example of 871:

87 Divide 87 by 2, to get a quotient of 43.5
. ——-=435 Division "remainder" = 1, or the < 1 portion
2 of the quotient times the divisor (0.5 x 2)
. 43 Take the whole-number portion of 43.5 (43)
. —--=215 and divide it by 2 to get 21.5, or 21 with
2 a remainder of 1
.21 Andsoon...remainder =1 (0.5x 2)
. —--=10.5
2
. 10 And soon ... remainder =0
. -—-=5.0
2
. 5 Andsoon...remainder =1 (0.5x 2)
. -—-=25
2
.2 And soon...remainder =0
. —-=1.0
2
1 ... until we get a quotient of less than 1

. —--=05 remainder = 1 (0.5 x 2)
2

The binary bits are assembled from the remainders of the
successive division steps, beginning with the LSB and proceeding
to the MSB. In this case, we arrive at a binary notation of 1010111,.

18

When we divide by 2, we will always get a quotient ending with
either ".0" or ".5", i.e. a remainder of either O or 1. As was said
before, this repeat-division technique for conversion will work for
number systems other than binary. If we were to perform
successive divisions using a different number, such as 8 for
conversion to octal, we will necessarily get remainders between 0
and 7. Let's try this with the same decimal number, 874¢:

87 Divide 87 by 8, to get a quotient of 10.875

. ---=10.875 Division "remainder" = 7, or the < 1 portion
8 of the quotient times the divisor (.875 x 8)

. 10

. ---=1.25 Remainder = 2
8

.1

. ——-=0.125 Quotient is less than 1, so we'll stop here.
8 Remainder = 1

. RESULT: 8719 =127s

We can use a similar technique for converting number
systems dealing with quantities less than 1, as well. For converting
a decimal number less than 1 into binary, octal, or hexadecimal, we
use repeated multiplication, taking the integer portion of the product
in each step as the next digit of our converted number. Let's use
the decimal number 0.8125;4 as an example, converting to binary:

. 0.8125x2=1.625 Integer portion of product = 1

. 0.625x2=1.25 Take < 1 portion of product and remultiply
. Integer portion of product = 1

. 025x2=0.5 Integer portion of product = 0

: 0.5x2=1.0 Integer portion of product = 1
. Stop when product is a pure integer
(ends with .0)

. RESULT: 0.8125,p =0.1101;

As with the repeat-division process for integers, each step
gives us the next digit (or bit) further away from the "point.” With
integer (division), we worked from the LSB to the MSB (right-to-
left), but with repeated multiplication, we worked from the left to the
right. To convert a decimal number greater than 1, with a < 1

19

component, we must use both techniques, one at a time. Take the
decimal example of 54.40625,, converting to binary:

REPEATED DIVISION FOR THE INTEGER PORTION:

54

—-—-=27.0 Remainder = 0

2

27

---=135 Remainder =1 (0.5x 2)
2

13

--=6.5 Remainder =1 (0.5 x 2)
2

6

---=3.0 Remainder =0

2

3

--=15 Remainder =1 (0.5 x 2)
2

1

--=0.5 Remainder =1 (0.5 x 2)
2

PARTIAL ANSWER: 54,0, =110110,

REPEATED MULTIPLICATION FOR THE < 1 PORTION:
. 0.40625 x 2 = 0.8125 Integer portion of product = 0

. 0.8125x2=1.625 Integer portion of product = 1

. 0.625x2=1.25 Integer portion of product = 1

. 0.25x2=05 Integer portion of product =0

. 05x2=1.0 Integer portion of product = 1

. PARTIAL ANSWER: 0.40625;0 =0.01101,

. COMPLETE ANSWER: 5419 + 0.4062510 = 54.406251¢
110110, + 0.01101, = 110110.01101,

1.7 UNSIGNED AND SIGNED INTEGERS

An integer is a number with no fractional part; it can be
positive, negative or zero. In ordinary usage, one uses a minus sign

20

to designate a negative integer. However, a computer can only
store information in bits, which can only have the values zero or
one. We might expect, therefore, that the storage of negative
integers in a computer might require some special technique. It is
for that reason that we began this section with a discussion of
unsigned integers.

As you might imagine, an unsigned integer is either
positive or zero. Consider a single digit decimal number: in a single
decimal digit, you can write a number between 0 and 9. In two
decimal digits, you can write a number between 0 and 99, and so
on. Since nine is equivalent to 10 * - 1, 99 is equivalent to 102 - 1,
etc., in n decimal digits, you can write a number between 0 and 10"
- 1. Analogously, in the binary number system, an unsigned
integer containing n bits can have a value between 0 and 2" —
1 (which is 2" different values).

This fact is one of the most important and useful things to
know about computers. When a computer program is written, the
programmer, either explicitly or implicitly, must decide how many
bits are used to store any given quantity. Once the decision is
made to use n bits to store it, the program has an inherent
limitation: that quantity can only have a value between 0 and 2" - 1.
You will meet these limitations in one form or another in every piece
of hardware and software that you will learn about during your
career:

. the BIOS (Basic Input Output Software) in older PCs
uses 10 bits to store the cylinder number on the hard drive where
your operating system begins; therefore those PCs cannot boot an
operating system from a cylinder greater than 2° - 1, or 1023.

. a FAT12 file system (used on Windows diskettes), which
allocates file space in units called "clusters", uses 12 bits to store
cluster numbers; therefore there can be no more than 2 *2 - 1 or
4,095 clusters in such a file system.

. a UNIX system keeps track of the processes (programs)
it runs using a PID (Process IDentifier); for typical memory sizes,
the PID is 16 bits long and so after 2 *° - 1 or 65,535 processes, the
PIDs must start over at the lowest number not currently in use.
These are just a few examples of this basic principle.

Most modern computers store memory in units of 8 bits, called a
"byte" (also called an "octet"). Arithmetic in such computers can be
done in bytes, but is more often done in larger units called "(short)
integers" (16 bits), "long integers” (32 bits) or "double integers”
(64 bits). Short integers can be used to store numbers between 0
and 2% - 1, or 65,535. Long integers can be used to store numbers

21

between 0 and 2 *? - 1, or 4,294,967,295. and double integers can
be used to store numbers between 0 and 2 ® - 1, or
18,446,744,073,709,551,615. (Check these!)

When a computer performs an unsigned integer arithmetic
operation, there are three possible problems which can occur:

1. if the result is too large to fit into the number of bits assigned to
it, an "overflow" is said to have occurred. For example if the result
of an operation using 16 bit integers is larger than 65,535, an
overflow results.

2. in the division of two integers, if the result is not itself an
integer, a "truncation” is said to have occurred: 10 divided by 3 is
truncated to 3, and the extra 1/3 is lost. This is not a problem, of
course, if the programmer's intention was to ignore the remainder!

3. any division by zero is an error, since division by zero is not
possible in the context of arithmetic.

1.8 SIGNED INTEGERS

Signed integers are stored in a computer using 2's complement.
As you recall, when computing the 2's complement of a number it
was necessary to know how many bits were to be used in the final
result; leading zeroes were appended to the most significant digit in
order to make the number the appropriate length. Since the
process of computing the 2's complement involves first computing
the 1's complement, these leading zeros become leading ones, and
the left most bit of a negative number is therefore always 1. In
computers, the left most bit of a signed integer is called the "sign
bit".

Consider an 8 bit signed integer: let us begin with0 0000000,
and start counting by repeatedly adding 1:

. When you get to 127, the integer has avalueof 01111
11 15, this is easy to see because you know now that a 7 bit
integer can contain a value between 0 and 2 7 - 1, or 127. What
happens when we add 1?

. If the integer were unsigned, the next value would be 1 0
000000, or128 (2 7). But since this is a signed integer, 1 0 0 0
0 0 0 0, is a negative value: the sign bit is 1!

. Since this is the case, we must ask the question: what is
the decimal value corresponding to the signed integer
100000 003,? To answer this question, we must take the 2's

22

complement of that value, by first taking the 1's complement and
then adding one.

. The 1's complementis01111111,, ordecimal 127.
Since we must now add 1 to that, our conclusion is that the signed
integer 1 000 0 0 0 0, must be equivalent to decimal -128!

Odd as this may seem, it is in fact the only consistent way to
interpret 2's complement signed integers. Let us continue now to
"count" by adding 1to 100000003:

. 10000000,+00000001,is10000001,.

. To find the decimal equivalent of 1 000000 15, we
again take the 2's complement: the 1's complement is
01111110,andaddinglweget01111111,(127)s0100
0000 1;,isequivalentto-127.

. We see then that once we have accepted the fact that 1
0000000;,isdecimal -128, counting by adding one works as we
would expect.

. Note that the most negative number which we can store
in an 8 bit signed integer is -128, which is - 2% ", and that the
largest positive signed integer we can store in an 8 bit signed
integer is 127, which is 2% * - 1.

. The number of integers between -128 and + 127
(inclusive) is 256, which is 2 ; this is the same number of values
which an unsigned 8 bit integer can contain (from 0 to 255).

. Eventually we will count allthewayupto11111111
2. The 1's complement of this number is obviously 0, so
11111111, mustbe the decimal equivalent of -1.

Using our deliberations on 8 bit signed integers as a guide, we
come to the following observations about signed integer arithmetic
in general:

. if a signed integer has n bits, it can contain a number
between - 2" tand + (2" - 1).

. since both signed and unsigned integers of n bits in
length can represent 2 " different values, there is no inherent
way to distinguish signed integers from unsigned integers
simply by looking at them; the software designer is
responsible for using them correctly.

. no matter what the length, if a signed integer has a binary
value of all 1's, it is equal to decimal -1.

23

You should verify that a signed short integer can hold decimal
values from -32,768 to +32,767, a signed long integer can contain
values from -2,147,483,648 to +2,147,483,647 and a signed double
integer can represent decimal values from -9,223, 372, 036, 854,
775, 808 to +9,223, 372, 036, 854, 775, 807.

There is an interesting consequence to the fact that in 2's
complement arithmetic, one expects to throw away the final carry:
in unsigned arithmetic a carry out of the most significant digit
means that there has been an overflow, but in signed arithmetic an
overflow is not so easy to detect. In fact, signed arithmetic
overflows are detected by checking the consistency of the signs of
the operands and the final answer. A signed overflow has occurred
in an addition or subtraction if:

. the sum of two positive numbers is negative;

. the sum of two negative numbers is non-negative;

. subtracting a positive number from a negative one yields
a positive result; or

. subtracting a negative number from a non-negative one

yields a negative result.

Integer arithmetic on computers is often called "fixed point”
arithmetic and the integers themselves are often called fixed point
numbers. Real numbers on computers (which may have fractional
parts) are often called "floating point" numbers.

1.9 1'S COMPLEMENT

Binary numbers can also be represented by ‘radix’ and ‘radix -1’
forms. 1's complement of a binary number N is obtained by the
formula : -(2"n - 1) — N where n is the no of bits in number N

Example

Convert binary number 111001101 to 1's complement.

Method:

N =111001101

n=9

2"n = 256 = 100000000

2" -1=255=11111111

1's complement of N = (100000000 — 1) -111001101
011111111

—111001101

= 000110010

Answer:

1's complement of N is 000110010

Trick:
Invert all the bits of the binary number
N =111001101

24

1's complement of N is 000110010

1.10 2’S COMPLEMENT

2's complement of a binary number N is obtained by the formula
(2"n) =N
where n is the no of bits in number N

Example:
Convert binary number 111001101 to 2’'s complement

Method
2’'s complement of a binary no can be obtained by two step process
Step 1
1’s complement of number N = 000110010
Step 2
1's complement + 1
000110010

+ 000000001

= 000110011

Answer
2’'s complement of a binary no 111001101 is 000110011

Trick : 2’s complement can be represented by keeping all lower
significant bits till first 1 as it is and taking complement of all upper
bits after that.

1.11 BINARY ARITHMETIC

1.11.1 Addition

° 0+0=0

° 0+1=1

° 1+0=1

. 1+1=0, and carry 1 to the next more significant bit

For example,

00011010 + 00001100 = 00100110

11 carries

00011010 = 26pase10)

+00001100 = 12410
00100110 = 38paser0)

00010011 + 00111110 = 01010001

11111 carries
00010011 19(base 10)
+00111110 62(base 10)

01010001

8]-(base 10)

25

1.11.2 Subtraction

. 0-0=0

o 0-1=1, and borrow 1 from the next more significant bit
L 1-0=1

. 1-1=0

For example,

00100101 - 00010001 = 00010100

0 borrows
00100101 = 37 pase 10)
00010001 = 17pase10)

00010100

20(base 10)

00110011 - 00010110 = 00011101

0'0 1 borrows
001226011 = 51(pase 10)
00010110 = 22pase10)
00011101 = 294,10

1.11.3 Multiplication

. 0x0=0

. 0x1=0

L 1x0=0

o 1x1=1, and no carry or borrow bits
For example,

00101001 x 00000110 =11110110

00101001 = 41(base]_0)
x00000110 = B(pase 10)
00000000
00101001
00101001
0011110110 = 246 pase

10)

26

00010111 x 00000011 = 01000101

00010111 = 23(base10)
x00000011 = 3pase1g

11111 carries
00010111
00010111

001000101

69(base 10)

Another Method: Binary multiplication is the same as repeated
binary addition; add the multicand to itself the multiplier number of

times.
00001000 x 00000011 = 00011000

1 carries
00001000 = Bpase10)
00001000 = Bpase i)
+00001000 = 8paseun)

00011000 = 24(base10)
1.11.4 Division

Binary division is the repeated process of subtraction, just as in
decimal division.

For example,

00101010 + 00000110 = 00000111

111 = 7(base 10)
110)00;10 1 010 = 42pase1o)
- 1 - 6(baselO)
1 borrows
1 o6 01
-1 10
110
- 110

27

10000111 + 00000101 = 00011011

1 1 011 = 27pase1o)
101) 2 0 06 ' 0 111 = 135ase
10)
10 1 = S(base 10)
1 1 '
1 0o 1
11
0
1 11
1 01
101
101
0

Binary Number System

System Digits: 0 and 1

Bit (short for binary digit): A single binary digit

LSB (least significant bit): The rightmost bit

MSB (most significant bit): The leftmost bit

Upper Byte (or nibble): The right-hand byte (or nibble) of a pair
Lower Byte (or nibble): The left-hand byte (or nibble) of a pair

Binary Equivalents

1 Nibble = 4 bits

1 Byte = 2 nibbles = 8 bits

1 Kilobyte (KB) = 1024 bytes

1 Megabyte (MB) = 1024 kilobytes = 1,048,576 bytes

1 Gigabyte (GB) = 1024 megabytes = 1,073,741,824 bytes

1.11.5 Binary subtraction using 1's complement
Let's consider how we would solve our problem
subtracting 1,, from 74, using 1's complement.

1. First, we need to convert 0001, to its 0111 (7)
negative equivalent in 1's complement. - 0001 -(1)
2. To do this we change all the 1's to O's

and O's to 1's. Notice that the most-significant 0001 -> 1110
digit is now 1 since the number is negative.

of

28

3. Next, we add the negative value we 0111 (7)
computed to 0111,. This gives us a result of + 1110 +(-1)
10101,. 10101 (?)
4, Notice that our addition caused an

overflow bit. Whenever we have an overflow 0101

bit in 1's complement, we add this bit to our + 1

sum to get the correct answer. If there is no 0110 (6)
overflow bit, then we leave the sum as it is.

. . 0111 (7)
?&])ThIS gives us a final answer of 0110, -0001 - (1)
1o 0110 (6)

Now let's look at an example where our problem does not generate
an overflow bit. We will subtract 7,, from 1,, using 1's complement.

1. First, we state our problem in binary. i 82%) (17)
2. Next, we convert 0111, to its negative +0108010 £1)7
equivalent and add this to 0001,. 001 —(—)(7)

3. This time our result does not cause an

overflow, so we do not need to adjust the

sum. Notice that our final answer is a

negative number since it begins with a 1. 0001 (1)
Remember that our answer is in 1's +1000 +(-7)
complement notation so the correct decimal 1001 (-6)
value for our answer is -6,, and not 9.

(In unsigned representation, we re-

complement the answer and attach a — sign.)

1.11.6 Binary subtraction using 2's complement
Now let's consider how we would solve our problem of subtracting
1,, from 7., using 2's complement.

1. First, we need to convert 0001, to its 0111 (7)
negative equivalent in 2's complement. - 0001 -(1)

2. To do this we change all the 1's to O's

and O's to 1's and add one to the number. 000l '>11110
Notice that the most-significant digit is now 1 1111

since the number is negative.

3. Next, we add the negative value we 0111 (7)
computed to 0111,. This gives us a result of +1111 +(-1)
10110,. 10110 (?)

4. Notice that our addition caused an

overflow bit. Whenever we have an overflow 0111 (7)
bit in 2's complement, we discard the extra -0001 - (1)
bit. This gives us a final answer of 0110, (or 0110 (6)
610)-

29

Now let's look at an example where our problem does not
generate an overflow bit. We will subtract 7,, from 1,, using 1's
complement.

, L 0001 (1)
1. First, we state our problem in binary. _0111 - (7)
2. Next, we convert 0111, to its negative +01000010 Jfl:_)7:
equivalent and add this to 0001,. Add 1, to it. 1001)
3. This time our result does not cause an
overflow, so we do not need to adjust the
sum. Notice that our final answer is a
negative number since it begins with a 1. 0001 (1)

Remember that our answer is in 2's 4, +(7)
complement notation so the correct decimal —~-~

) 1010 (-6)
value for our answer is -6,, and not 9.
(In unsigned representation, we re-
complement the answer 0101 add 1 to it 0110
and attach a — sign.)

1.12 QUESTIONS

=

Explain the following terms:
Radix
Decimal number system
Binary number system
Octal number system
Hexadecimal number system
1’s complement
2’'s complement
ert the following numbers from decimal to binary:
512
255
56.21
178.71
223.25
Convert the following numbers from binary to decimal:
a. 11011000111
b. 11111111111
c. 10101010
d. 1111.011
e. 1101101.11
4. Convert the following numbers from decimal to octal:
a. 1024
b. 800
c. 789
d. 826
e. 425

2. Co

m.ao.cw:@-"rb.ao.cw

w

30

. Convert the following numbers from octal to decimal:
a. 145
b. 512
c. 677
d. 177
e. 1024
. Convert the following numbers from decimal to hexadecimal:
a. 4096
b. 975
c. 1263
d. 127
e. 659
. Convert the following numbers from hexadecimal to decimal,
binary and octal:
a. FFFF
b. A2C3
c. 8ABC
d. 1235
e. 6857
. Perform the following subtraction in binary using 1's
complement and 2’'s complement:
45 - 26
87 — 96
128 — 65
142 — 220
100 - 56

Pa0 TP

1.13 FUTHER READING

% Computer Architecture and Organization by William
Stallings

** Fundamentals of Computer organization and Design by
Sivarama P. Dandamudi

% Digital Electronics - An Introduction to Theory and Practice
by W H Gothmann

¢ Binary Functions and Their Applications by Stormer, H.,
Beckmann, Martin J

+ The Number System by H. A. Thurston
« http://en.wikipedia.org/wiki/Analog signal

< http://en.wikipedia.org/wiki/Binary numeral system

O o% % o
0P 0,0 0,0 050

31

CODES

Unit Structure

2.0 Objectives
2.1 Binary codes

211 Binary-coded-decimal Numbers

2.2 Geometric Representation of binary Numbers
2.3 Distance

2.4 Unit-distance codes

2.5 Symmetries of the n-cube

2.6 Error-detecting and error-correcting codes
2.7 Single-error-correcting codes

2.8 Ascii code

2.9 Ebcdic code

2.10 Unicode

2.11 Questions

2.12 Further Reading

3.0 OBJECTIVES

After completing this chapter, you will be able to:

3

%

3

%

R/
°

3

%

5

S

Understand the binary codes and arithmetic with binary
codes.

Learning the geometrical representation of Binary Numbers.
Understand the Unit — Distance codes.

Learn the Symmetries Of The N-Cube.

Work with error handling and error detection codes.

Learn the basics about the ASCII, EBCDIC & UNICODE and
use the codes in arithmetic.

3.1

BINARY CODES

The binary number system has many advantages and is

widely used in digital systems. However, there are times when

32

binary numbers are not appropriate. Since we think much more
readily in terms of decimal numbers than binary numbers, facilities
are usually provided so that data can be entered into the system in
decimal form, the conversion to binary being performed
automatically inside the system. In fact, many computers have
been designed which work entirely with decimal numbers. For this
to be possible, a scheme for representing each of the 10 decimal
digits as a sequence of binary digits must be used.

3.1.1 Binary-Coded-Decimal Numbers

To represent 10 decimal digits, it is necessary to use at least
4 binary digits, since there are 24 , or 16, different combinations of
4 binary digits but only 23, or 8, different combinations of 3 binary
digits. If 4 binary digits, or bits, are used and only one combination
of bits is used to represent each decimal digit, there will be six
unused or invalid code words. In general, any arbitrary assignment
of combinations of bits to digits can be used so that there are 16!/6!
or approximately 2.9 X 10'° possible codes.

Binary Codes:

Decimal 4 4 2 1 B 4 ¥4 1 2 4 2 1 Exceaq 3
digt | b B B by
1) 0 i 1) 1) i i 1) a a 1] 1] a a 1] 1 1
1 0 1] 1] 1 1] 1 1 1 a 1] 1] 1 0 1 1] 1]
2 0 1] 1 1] 1] 1 1 a a 1] 1 1] 0 1 1] 1
3 0 1] 1 1 1] 1 L] 1 a 1] 1 1 0 1 1 1]
4 0 1 1] 1] L1 1 1] 1} 1} 1 1] 1) 0 1 1 1
3 0 1 1] 1 1 L1 1 1 1 1] 1 1 1 1} 1} 1}
11 0 1 1 1] 1 L1 1 1} 1 1 1] 1) 1 1} 1} 1
7 0 1 1 1 1 L1 1] 1 1 1 1] 1 1 1} 1 1}
B 1 i 1) 1) 1 i 1) a 1 1 1 a 1 1] 1 1
1 1 i 1) 1 1 1 1 1 1 1 1 1 1 1 a a

Only a few of these codes have ever been used in any
system, since the arithmetic operations are very difficult in almost
all of the possible codes. Several of the more common 4-bit
decimal codes are shown in Table. The 8,4,2,1 code is obtained by
taking the first 10 binary numbers and assigning them to the
corresponding decimal digits. This code is an example of a
weighted code, since the decimal digits can be determined from
the binary digits by forming the sum d = 8bz + 4b, + 2b; + by . The
coefficients 8, 4, 2, 1 are known as the code weights. The number
462 would be represented as 0100 0110 0010 in the 8,4,2,1 code.
It has been shown in that there are only 17 different sets of weights
possible for a positively weighted code: (3,3,3,1), (4,2,2,1),
4,3,1,1), (5,2,1,1),(4,3,2,1), (4,4,2,1), (5,2,2,1), (5,3,1,1), (5,3,2,1),
(5,4,2,1), (6,2,2,1), (6,3,1,1),(6,3,2,1), (6,4,2,1), (7,3,2,1), (7,4,2,1),
(8,4,2,1).

33

It is also possible to have a weighted code in which some of
the weights are negative, as in the 8,4,-2,-1 code shown in Table.
This code has the useful property of being self-complementing: if
a code word is formed by complementing each bit individually
(changing 1's to O's and 0's to 1's), then this new code word
represents the 9's complement of the digit to which the original
code word corresponds. For example, 0101 represents 3 in the
8,4,-2,-1 code, and 1010 represents 6 in this code. In general, if b';
denotes the complement of b; , then a code is self-complementing
if, for any code word bsb,b;bo representing a digit d; , the code word
b'sb';b'1b's represents 9 - di. The 2,4,2,1 code of Table is an
example of a self-complementing code having all positive weights,
and the excess-3 code is an example of a code which is self-
complementing but not weighted. The excess-3 code is obtained
from the 8,4,2,1 code by adding (using binary arithmetic) 0011 (or
3) to each 8,4,2,1 code word to obtain the corresponding excess-3
code word.

Binary codes using more than 4-bits

Decimal Biqnimary
digit 2-out-of-3 5043210
o 00011 0100001
1 00101 010010
2 00110 0100100
3 01001 0101000
4 01010 0110000
3 01100 1000001
H 10001 1000010
i 10010 1000100
EH 101060 1001000
9 11000 1010000

Although 4 bits are sufficient for representing the decimal
digits, it is sometimes expedient to use more than 4 bits in order to
achieve arithmetic simplicity or ease in error detection. The 2-out-
of-5 code shown in Table has the property that each code word has
exactly two 1's. A single error which complements 1 of the bits will
always produce an invalid code word and is therefore easily
detected. This is an unweighted code. The biquinary code shown in
Table is a weighted code in which 2 of the bits specify whether the
digit is in the range O to 4 or the range 5 to 9 and the other 5 bits
identify where in the range the digit occurs.

34

3.2 GEOMETRIC REPRESENTATION OF BINARY
NUMBERS

An n-bit binary number can be represented by what is called
a point in nspace. To see just what is meant by this, consider the
set of 1-bit binary numbers, that is, 0 and 1. This set can be
represented by two points in 1-space, i.e., by two points on a line.
Such a presentation is called a 1-cube and is shown in Figure. (A
O-cube is a single point in 0-space.) Now consider the set of 2-bit
binary numbers, that is, 00, 01, 10, 11 (or, decimally, 0, 1, 2, 3).
This set can be represented by four points (also called vertices, or
nodes) in 2-space. This representation is called a 2-cube and is
shown in Figure. Note that this figure can be obtained by projecting
the 1-cube (i.e., the horizontal line with two points) downward and
by prefixing a 0 to 0 and 1 on the original 1-cube anda 1to 0 and 1
on the projected 1-cube. A similar projection procedure can be
followed in obtaining any next-higher-dimensional figure. For
example, the representation for the set of 3-bit binary numbers is
obtained by projecting the 2-cube representation of Figure c.

D 1

o -—

(a) (b)

DD 101
o0 01 uuu
iy
10 1 Do

ic) (d)

Figure: n-Cubes forn =0, 1,2, 3: (a) O-cube; (b) 1-cube;
(c) 2-cube; (d) 3-cube.

A 0 is prefixed to the bits on the original 2-cube, and a 1 is
prefixed to the bits on the projection of the 2-cube. Thus, the 3-bit
representation, or 3-cube, is shown in Figure d. A more formal
statement for the projection method of defining an n-cube is as
follows:

1. A O-cube is a single point with no designation.

2. An n-cube is formed by projecting an (n-1)-cube. A O is
prefixed to the designations of the points of the original (n-1)-
cube, and a 1 is prefixed to the designations of the points of
the projected (n-1)-cube.

35

There are 2" points in an n-cube. A p-subcube of an n-cube.
(p < n) is defined as a collection of any 2p points which have
exactly (n -p) corresponding bits all the same. For example, the
points 100, 101, 000, and 001 in the 3-cube (Figure. d) form a 2-
subcube, since there are 22 = 4 total points and 3 - 2 = 1 of the bits
(the second) is the same for all four points. In general, there are
(n12"P)/[(n -p)!p!] different p-subcubes in an n-cube, since there are
("Cn-p) = (n!/((n-p)!p!)) (number of ways of selecting n things taken n
-p at a time) ways in which n -p of the bits may be the same, and
there are 2n -p combinations which these bits may take on. For
example, there are (3!22)/(2!1!) = 12 1-subcubes (line segments) in
a 3-cube, and there are (3!2*)/(1!2!) = 6 2-subcubes ("squares") in
a 3-cube.

Besides the form shown in Figure, there are two other
methods of drawing an n-cube which are frequently used. The first
of these is shown in Figure 2 for the 3-and 4-cubes. It is seen that
these still agree with the projection scheme and are merely a
particular way of drawing the cubes. The lines which are dotted are
usually omitted for convenience in drawing.

oo oo 1141 1001

000 010 110 1007 L ORHOTERRERITELIR

2 THOL DKL T L T nmnﬂmmillm- 1010

(=) (b)

Figure: Alternative representations: (a) 3-cube; (b) 4-cube.

oo o1 11 10
00 |dO000 1001 100(1 000

07 (OO 11ol1onl
(AR ORIC AN RIARERIRE N

oo o1 11 1o

O|0oD(oIoj1 10100
1(000ali|{111]1a1 10001001101 HIO(D10

(8 (b}

Figure n-Cube maps forn =3 (a) and n =4 (b).

If in the representation of Figure we replace each dot by a
square area, we have what is known as an n-cube map. This
representation is shown for the 3- and 4- cubes in Figure Maps will
be of considerable use to us later. Notice that the appropriate entry
for each cell of the maps of Figure can be determined from the

36

corresponding row and column labels. It is sometimes convenient
to represent the points of an n-cube by the decimal equivalents of
their binary designations. For example, Figure shows the 3- and 4-
cube maps represented this way. It is of interest to note that, if a
point has the decimal equivalent Ni in an n-cube, in an (n + 1)-cube
this point and its projection (as defined) become N; and N; + 2" .

3.3 DISTANCE

A concept which will be of later use is that of the distance
between two points on an n-cube. Briefly, the distance between
two points on an n-cube is simply the number of coordinates (bit
positions) in which the binary representations of the two points
differ. This is also called the Hamming distance.

For example, 10110 and 01101 differ in all but the third
coordinate (from left or right). Since the points differ in four
coordinates, the distance between them is 4. A more formal
definition is as follows: First, define the mod 2 sum of two bits, a
b, by

010=0170=1
01=111=0

That is, the sum is O if the 2 bits are alike, and it is 1 if the 2 bits
are different. Now consider the binary representations of two points,
Pi = (an-1an2 ...a 0)) and Pj = (bn1 bn2 ...b0)), on the n-cube. The
mod 2 sum of these two points is defined as

Pk = Pi [_Pj = (ani[Jbn1, an2 [1bn2, ... a0 [1b0)

This sum Pk is the binary representation of another point on the
n-cube. The number of 1's in the binary representation Pi is defined
as the weight of Pi and is given the symbol |Pi |. Then the distance
(or metric) between two points is defined as

D(Pi, Pj) =|Pi LIPj]
The distance function satisfies the following three properties:
e D(Pi,Pj)=0ifandonly if Pi=Pj
e D(Pi,Pj)=D(Pj,Pi)>0if PizPj
e D(Pi,Pj)+D(Pj,Pk)>D(Pi,Pk) Triangle inequality

00 01 11 10

co{o|412]8

00 01 11 10 i Al

ololz 614 137 [15]1

NEEE 10 2[6 [14]10
ta] 1))

Figure: Decimal labels in n-cube maps: (a) 3-cube map;
(b) 4-cube map.

37

To return to the more intuitive approach, since two adjacent
points (connected by a single line segment) on an n-cube form a 1-
subcube, they differ in exactly one coordinate and thus are distance
1 apart. We see then that, to any two points which are distance D
apart, there corresponds a path of D connected line segments on
the n-cube joining the two points. Furthermore, there will be more
than one path of length D connecting the two points (for D > 1 and
n > 2), but there will be no path shorter than length D connecting
the two points. A given shortest path connecting the two points,
thus, cannot intersect itself, and D + 1 nodes (including the end
points) will occur on the path.

3.4 UNIT-DISTANCE CODES

In terms of the geometric picture, a code is simply the
association of the decimal integers (0,1,2,...) with the points on an
n-cube. There are two types of codes which are best described in
terms of their geometric properties. These are the so-called
unitdistance codes and error-detecting and error-correcting
codes. A unit-distance code is simply the association of the
decimal integers (0,1,2,...) with the points on a connected path in
the n-cube such that the distance is 1 between the point
corresponding to any integer i and the point corresponding to
integer i + 1 (see Figure). That is, if Pi is the binary-code word for
decimal integer i, then we must have

D(Pi,Pi+1)=1 i=0,1,2, ...

Unit-distance codes are used in devices for converting
analog or continuous signals such as voltages or shaft rotations
into binary numbers which represent the magnitude of the signal.
Such a device is called an analog-digital converter. In any such
device there must be boundaries between successive digits, and it
is always possible for there to be some misalignment among the
different bit positions at such a boundary. For example, if the
seventh position is represented by 0111 and the eighth position by
1000, misalignment could cause signals corresponding to 1111 to
be generated at the boundary between 7 and 8. If binary numbers
were used for such a device, large errors could thus occur. By
using a unit-distance code in which adjacent positions differ only in
1 bit, the error due to misalignment can be eliminated.

The highest integer to be encoded may or may not be
required to be distance 1 from the code word for 0. If it is distance
1, then the path is closed. Of particular interest is the case of a
closed nonintersecting path which goes through all 2n points of the
n-cube. In graph theory such a path is known as a (closed)
Hamilton line. Any unit-distance code associated with such a path
is sometimes called a Gray code, although this term is usually

38

reserved for a particular one of these codes. To avoid confusing
terminology, we shall refer to a unit-distance code which
corresponds to a closed Hamilton line as a closed n code. This is
a unit-distance code containing 2n code words in which the code
word for the largest integer (2n - 1) is distance 1 from the code
word for the least integer (0). An open n code is similar except that
the code words for the least and largest integer, respectively, are
not distance 1 apart. The most useful unit distance code is the Gray
code which is shown in Table The attractive feature of this code is
the simplicity of the algorithm for translating from the binary number
system into the Gray code.

100-7 3————4101-6

4111-5
S011-2

Figure: Path on a 3-cube corresponding to a unit-
distance code.

Unit-distance code

000
001
011
010
110
111
1M
100

=] S A e e b =D

This algorithm is described by the expression
gi=bilbi+1

39

Decimal | & B b B | 8 B2 B Eo
7} 0 0 0 7} 7}] 0 0
1 0 0 0 1 o D 0 1
2 0 0 1 o o D 1 1
3 0 0 1 1 I D 1 0
4 0 1 0 ¢ ¢ 1 1 0
5 0 1] 1 o 1 1 1
6 0 1 1 o o 1 0 1
7 0 1 1 1 o 1 0 0
8 1]] ¢ 1 1 0 0
9 1]] 1 1 1 0 1
10 1] 1 ¢ 1 1 1 1
11 1] 1 1 1 1 1 0
12 1 1] ¢ 1)] 1 0
13 1 1] 1 1)] 1 1
14 1 1 1 o 1] 0 1
15 1 1 1 1 1] 0 0

The Gray code

3.5 SYMMETRIES OF THE N-CUBE

A symmetry of the n-cube is defined to be any one-to-one
translation of the binary point representations on the n-cube which
leaves all pairwise distances the same. If we consider the set of
binary numbers, we see that there are only two basic translation
schemes which leave pairwise distances the same. (1) The bits of
one coordinate may be interchanged with the bits of another
coordinate in all code words. (2) The bits of one coordinate may be
complemented (i.e., change 1's to O's and 0's to 1's) in all code
words. Since there are n! translation schemes possible using (1),
and since there are 2n ways in which coordinates may be
complemented, there are 2n translation schemes possible using
(2). Thus, in all there are 2n(n!) symmetries of the n-cube. This
means that for any n-bit code there are 2n (n)1 rather ftrivial
modifications of the original code (in fact, some of these may result
in the original code) which can be obtained by interchanging and
complementing coordinates. The pairwise distances are the same
in all these codes.

It is sometimes desired to enumerate the different types of a
class of codes. Two codes are said to be of the same type if a
symmetry of the n-cube translates one code into the other (i.e., by
interchanging and complementing coordinates). As an example, we
might ask: What are the types of closed n codes? It turns out that
for n < 4 there is just one type, and this is the type of the
conventional Gray code. For n = 4, there are nine types. Rather
than specify a particular code of each type, we can list these types
by specifying the sequence of coordinate changes for a closed path

40

of that type. On the assumption that the coordinates are humbered
(3210), the nine types are shown in Table

TABLE Nine different types of unit-distance 4-bit code

Type
(Gray)

LT - Oy W RSy FURE
P ek b ek ek b e b IR
[— N — - — N —]
Ll —
i hnd bl] W el el el bl
bud bud bl bed bl bl D D
[WURN R — BV — VLR R —
Ll I B i — T —]
S e b b S b b
bd et 0D bl et e - D O
[~ SIS — - —
L il —]
b bl bk D W W [l
Ll — - N = — I — I —]
Bl et et bl B D bk ek
L N -
bud bl bl el bk W bl bl

3.6 ERROR-DETECTING AND ERROR-CORRECTING
CODES

Special features are included in many digital systems for the
purpose of increasing system reliability. In some cases circuits are
included which indicate when an error has occurred—error
detection—and perhaps provide some information as to where the
error is—error diagnosis. Sometimes it is more appropriate to
provide error correction: circuits not only detect a malfunction but
act to automatically correct the erroneous indications caused by it.
One technique used to improve reliability is to build two duplicate
systems and then to run them in parallel, continually comparing the
outputs of the two systems. When a mismatch is detected, actions
are initiated to determine the source of the error and to correct it.
Another approach uses three copies of each system module and
relies on voter elements to select the correct output in case one of
the three copies has a different output from the other two. This
technique is called triple modular redundancy (TMR). Such costly
designs are appropriate either when the components are not
sufficiently reliable or in systems where reliability is very important
as in real-time applications such as telephony, airline reservations,
or space vehicles.

In many other applications where such massive redundancy
is not justified it is still important to introduce some (less costly)
technigues to obtain some improvement in reliability. A very basic
and common practice is to introduce some redundancy in encoding
the information manipulated in the system. For example, when the
2-out-of-5 code is used to represent the decimal digits, any error in
only one bit is easily detected since if any single bit is changed the
resulting binary word no longer contains exactly two 1's. While it is
true that there are many 2-bit errors which will not be detected by

41

this code, it is possible to argue that in many situations multiple
errors are so much less likely than single errors that it is reasonable
to ignore all but single errors. Suppose it is assumed that the
probability of any single bit being in error is p and that this
probability is independent of the condition of any other bits. Also
suppose that p is very much less than one, (i.e., that the
components are very reliable). Then the probability of all 5 bits
representing one digit being correct is Py = (1p)°, the probability of
exactly one error is P; = 5(1p)*p and the probability of two errors is
P, =10(1p)°p®. Taking the ratio P,/P;= 2p/(1p) 12p/(1+p) << 1,
showing that the probability of a double error is much smaller than
that of a single error. Arguments such as this are the basis for the
very common emphasis on handling only single errors. It is possible
to easily convert any of the 4-bit decimal codes to single-error
detecting codes by the addition of a single bita parity bit as is
illustrated for the 8421 code in Table. The parity bit p is added to
each code word so as to make the total number of 1's in the
resultant 5-bit word even;
i.e., p= bo [bl]bz]b3

If any one bit is reversed it will change the overall parity
(number of 1's) from even to odd and thus provide an error
indication. This technique of adding a parity bit to a set of binary
words is not peculiar to binary-coded-decimal schemes but is
generally applicable. It is common practice to add a parity bit to all
information recorded on magnetic tapes.

TABLE 8421 code with parity bit added

Decimal B 4 2 1 Panity,
digit L by L by F
1] a D a 1] 1]
1 a 1} a 1 1
z] D 1 1] 1
3 a D 1 1 1]
4 a 1 a 1] 1
5 a 1 a 1 1]
3 a 1 1 0 1]
T a 1 1 1 1
E 1 D a 1] 1
9 1 D a 1 1]

The 8421 code with a parity bit added is shown plotted on
the 5-cube map of Figure Inspection of this figure shows that the
minimum distance between any two words is two as must be true
for any single-error-detecting code.

In summary, any single-error-detecting code must have a
minimum distance between any two code words of at least two, and

42

any set of binary words with minimum distance between words of at
least two can be used as a single-error-detecting code.

Also the addition of a parity bit to any set of binary words will
guarantee that the minimum distance between any two words is at
least two.

p=0 p=1

bz b
bybo a0 o1 11 10 by b 00 ol 11 1D
ad | o o0 4 B
|] ! 0ol I
11| 3 11 7
10 3] 10| 2

Figure Five-cube map for the 8421 BCD code with parity bit p

3.7 SINGLE-ERROR-CORRECTING CODES

A parity check over all the bits of a binary word provides an
indication if one of the bits is reversed; however, it provides no
information about which bit was changedfall bits enter into the
parity check in the same manner. If it is desired to use parity
checks to not only detect an altered bit but also to identify the
altered bit, it is necessary to resort to several parity checks each
checking a different set of bits in the word. For example, consider
the situation in Table in which there are three bits, M;, M, and M3,
which are to be used to represent eight items of information and
there are two parity check bits C; and C,. The information bits, Mi,
are often called message bits and the C; bits check bits. As
indicated in the table C; is obtained as a parity check over bits M;
and M3, while C; checks bits M, and Ms.

At first glance it might seem that this scheme might result in
a single-error-correcting code since an error in M3 alters both parity
checks while an error in M; or M, each alters a distinct single parity
check. This reasoning overlooks the fact that it is possible to have
an error in a check bit as well as an error in a message bit. Parity
check one could fail as a result of an error either in message bit M;
or in check bit C;. Thus in this situation it would not be clear
whether M; should be changed or not. In order to obtain a true
single-error-correcting code it is necessary to add an additional
check bit as in Table.

43

A parity check table

M, My, M; () y

= = x
x = =

C]_:M] @H}, C_'a:Mz'mM]

(a) b
Ml M2 A3 €l 2 C3
= x x C1=M) & My
= = 4 Oy =M@ My
= x = Ca=M1E My
()
My My My 0 O G5
a a 1] 1] 1] 0 a
b a 1] 1 1 1 a
c a 1 1] 1] 1 1
d a 1 1 1 0 1
a 1 1])] 1 0 1
I 1 1] 1 1] 1 1
E 1 1)] 1 1 a
h 1 1 1 1] 0 a

TABLE Eight-word single-error-correcting code: (a) Parity
check table; (b) parity check equations; (c) Single-error-
correcting code

Inspection of the parity check table in Table shows that an
error in any one of the check bits will cause exactly one parity
check violation while an error in any one of the message bits will
cause violations of a distinct pair of parity checks. Thus it is
possible to uniquely identify any single error. The code words of
Table are shown plotted on the 6-cube map of Figure Each code
word is indicated by the corresponding letter and all cells distance 1
away from a code word are marked with an 1.

The fact that no cell has more than one [Jshows that no cell
is distance one away from two code words. Since a single error
changes a code word into a new word distance one away and each
of such words is distance one away from only one code word it is
possible to correct all single errors. A necessary consequence of
the fact that no word is distance one away from more than one
code word is the fact that the minimum distance between any pair
of code words is three. In fact the necessary and sufficient
conditions for any set of binary words to be a single-error-correcting
code is that the minimum distance between any pair of words be
three.

44

A single error correcting code can be obtained by any
procedure which results in a set of words which are minimum
distance three apart. The procedure illustrated in Table is due to
and due to its systematic nature is almost universally used for
single-error-codes. With three parity check bits it is possible to
obtain a single-error-correcting code of more than eight code
words. In fact up to sixteen code words can be obtained. The parity
check table for a code with three check bits, C;, C,, and C4, and
four message bits M3 , Ms, Mg and My is shown in Table. The
peculiar numbering of the bits has been adopted to demonstrate
the fact that it is possible to make a correspondence between the
bit positions and the entries of the parity check table. If the blanks
in the table are replaced by 0's and the [1's by 1's then each column
will be a binary number which is the equivalent of the subscript on
the corresponding code bit. The check bits are placed in the bit
positions corresponding to binary powers since they then enter into
only one parity check making the formation of the parity check
equations very straightforward.

The fact that Table leads to a single-error-correcting code
follows from the fact that each code bit enters into a unique set of
parity checks. In fact, the necessary and sufficient conditions for a
parity check table to correspond to a single-error-correcting code
are that each column of the table be distinct (no repeated columns)
and that each column contain at least one entry. It follows from this
that with K check bits it is possible to obtain a single-error-
correcting code having at most 2¥ itotal bits.1 There are 2" different
columns possible but the empty column must be excluded leaving
2%icolumns.

1) M1M2 o

Mz Cy M3 Gy
CeCx 00 D1 11 10D CeCx 00 QI 11 10
po|la |X|X | 00| X |«
o1|H | X |x og1|x | x|«
11| % X F1|e | % | % | ¥
10(X | %X | b lg|x | x| X%

10 11

M3 4 Mz Cj
CeC3 UD 01 11 10 Calz 00 Q1 11 10
polx | X ® oa|% | % | x|h
o1 e | % | X o1 ¥ ¥ |x
NI NERE; NEEEE K
10 ¥ | ® | la|lx% | g | % |x

Figure Six-cube map

45

TABLE Parity check table for a single-error-correcting code
with 3 check bits and 4 message bits

O Gy My Gy Ms; Mg M;

x x x x
x x x x
x x x x

C] =H3 ﬁﬂj 'EH'}
Ty =M; DMg, 5+ M~
Ty =Ms DMy, &5 M~

3.8 ASCII CODE

Most programming languages have a means of defining a
character as a numeric code and, conversely, converting the code
back to the character.

ASCIl - American Standard Code for Information Interchange. A
coding standard for characters, numbers, and symbols that is the
same as the first 128 characters of the ASCII character set but
differs from the remaining characters.

The ASCII character set (excluding the extended characters
defined by IBM) is divided into four groups of 32 characters.

The first 32 characters, ASCIl codes 0 through 1Fh, form a
special set of non-printing characters called the control characters.
We call them control characters because they perform various
printer/display control operations rather than displaying symbols.

Examples of common control characters include:
= carriage return (ASCIl code 0Dh), which positions the
cursor to the left side of the current line of characters,
= line feed (ASCIl code 0Ah), which moves the cursor
down one line on the output device
= back space (ASCII code 08h), which moves the cursor
back one position to the left

Unfortunately, different control characters perform different
operations on different output devices. There is very little
standardization among output devices. To find out exactly how a
control character affects a particular device, you will need to consult
its manual.

46

The second group of 32 ASCII character codes comprise
various punctuation symbols, special characters, and the numeric
digits. The most notable characters in this group include the:

= space character (ASCII code 20h)

= numeric digits 0 through 9 (ASCIl codes 30h through

39h)

Note that the numeric digits differ from their numeric values only
in the high order nibble. By subtracting 30h from the ASCII code for
any particular digit you can obtain the numeric equivalent of that
digit.

The third group of 32 ASCII characters is reserved for the upper
case alphabetic characters.

The ASCII codes for the characters "A" through "Z" lie in the
range 41h through 5Ah. Since there are only 26 different alphabetic
characters, the remaining six codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes are
reserved for the lower case alphabetic symbols, five additional
special symbols, and another control character (delete).

Note that the lower case character symbols use the ASCII
codes 61h through 7Ah. If you compare the ASCII codes for the
upper and lower case characters to binary, you will notice that the
upper case symbols differ from their lower case equivalents in
exactly one bit position.

The only place these two codes differ is in bit five. Upper
case characters always contain a zero in bit five; lower case
alphabetic characters always contain a one in bit five. You can use
this fact to quickly convert between upper and lower case. If you
have an upper case character you can force it to lower case by
setting bit five to one. If you have a lower case character and you
wish to force it to upper case, you can do so by setting bit five to
zero. You can toggle an alphabetic character between upper and
lower case by simply inverting bit five.

The decimal representations of these ASCII codes are not
very enlightening. However, the hexadecimal representation of
these ASCII codes reveals something very important; the low order
nibble of the ASCII code is the binary equivalent of the represented
number.

By stripping away (i.e., setting to zero) the high order nibble
of a numeric character, you can convert that character code to the
corresponding binary representation. Conversely, you can convert
a binary value in the range 0 through 9 to its ASCII character
representation by simply setting the high order nibble to three. Note

a7

that you can use the logical-AND operation to force the high order
bits to zero; likewise, you can use the logical-OR operation to force
the high order bits to 0011 (three).

Note that you cannot convert a string of numeric characters
to their equivalent binary representation by simply stripping the high
order nibble from each digit in the string. Converting 123 (31h 32h
33h) in this fashion yields three bytes: 010203h, not the correct
value which is 7Bh. Converting a string of digits to an integer
requires more sophistication than this; the conversion above works
only for single digits.

Bit seven in standard ASCII is always zero. This means that
the ASCIlI character set consumes only half of the possible
character codes in an eight bit byte. The PC uses the remaining
128 character codes for various special characters including
international characters (those with accents, etc.), math symbols,
and line drawing characters. Note that these extra characters are a
non-standard extension to the ASCII character set. Most printers
support the PC's extended character set.

Should you need to exchange data with other machines
which are not PC-compatible, you have only two alternatives: stick
to standard ASCII or ensure that the target machine supports the
extended IBM-PC character set. Some machines, like the Apple
Macintosh, do not provide native support for the extended IBM-PC
character set. However you may obtain a PC font which lets you
display the extended character set. Other computers (e.g., Amiga
and Atari ST) have similar capabilities. However, the 128
characters in the standard ASCII character set are the only ones
you should count on transferring from system to system.

Despite the fact that it is a "standard”, simply encoding your
data using standard ASCIl characters does not guarantee
compatibility across systems. While it's true that an "A" on one
machine is most likely an "A" on another machine, there is very little
standardization across machines with respect to the use of the
control characters. Indeed, of the 32 control codes plus delete,
there are only four control codes commonly supported *P;
backspace (BS), tab, carriage return (CR), and line feed (LF).
Worse still, different machines often use these control codes in
different ways. End of line is a particularly troublesome example.
MS-DOS, CP/M, and other systems mark end of line by the two-
character sequence CR/LF. Apple Macintosh, Apple Il, and many
other systems mark the end of line by a single CR character. UNIX
systems mark the end of a line with a single LF character. Needless
to say, attempting to exchange simple text files between such
systems can be an experience in frustration. Even if you use
standard ASCII characters in all your files on these systems, you

48

will still need to convert the data when exchanging files between
them. Fortunately, such conversions are rather simple.

Despite some major shortcomings, ASCIl data is the
standard for data interchange across computer systems and
programs. Most programs can accept ASCII data; likewise most
programs can produce ASCII data. If you will program in the
assembly language you will be dealing with ASCII characters, and it
would for that reason be wise to study the layout of the character
set and memorize a few key ASCII codes (e.g., "0", "A", "a", etc.).

3.9 EBCDIC CODE

EBCDIC (Extended Binary Coded Decimal Information
Code) is an eight-bit character set that was developed by
International Business Machines (IBM). It was the character set
used on most computers manufactured by IBM prior to 1981.

EBCDIC is not used on the IBM PC and all subsequent "PC
clones". These computer systems use ASCIlI as the primary
character and symbol coding system. (Computer makers other than
IBM used the ASCII system since its inception in the 1960s.)

EBCDIC is widely considered to be an obsolete coding system,
but is still used in some equipment, mainly in order to allow for
continued use of software written many years ago that expects an
EBCDIC communication environment.

The EBCDIC code assignments are shown in the following table.

| Least Significant Bits

Most Sig. || O 1|2 3 4 5 6 7 8 9 A B Cc D E F
Bits V 0000{0001/{0010}{0011{{0100}{0101{|0110}|0111/{1000/|1001|{1010{|1011|[1100}{1101}|1110j| 1111
0 NUL||[SOH||STX||ETX|| PF || HT || LC ||DEL || GE ||RLF||SMM|| VT || FF || CR || SO || SI
0000 || @ | @ 1@ |G| @] G E) | @) | ©|(@20)](11)|(12)(13) (14)| (15)
00 || 01 || 02 || 03 || 04 || 05 || 06 || O7 || 08 || 09 || OA || OB || OC || OD || OE || OF

1 DLE||DC1|[DC2|| TM ||[RES|| NL || BS || IL ||CAN| EM (| CC ||CUI | IFS ||IGS || IRS || IUS
ooo1 || (48) (| (17)[1(18) [(19)||(20) || (21) || (22) || (23) || (24) || (25) || (26) || (27) || (28) || (29) || (30) || (31)
10 || 11 || 12 || 13 || 14 || 15 || 16 || 17 || 18 || 19 || 1A || 1B || 1C || 1D || 1E || 1F

2 DS ||SOS|| FS BYP|| LF ||[ETB|[ESC SM |[CuU2 ENQ||ACK]|| BEL
o010 ||32)]|(33)]/(34) | (35)(36) | (37) |{(38) || (39) || (40) || (41) || (42) || (43) || (44) || (45) || (46) || (47)
20 || 21 || 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 2A || 2B || 2C || 2D || 2E || 2F

3 SYN PN || RS || US ||[EOT CU3| DC4||NAK SuUB
o011 || (48) | (49)|[(50) | (51)|/(52) || (53) || (54) || (B5) || (56) || (57) || (58) || (59) || (60) || (61) || (62) || (63)
30 || 31 || 32|/ 33 || 34 || 35|36 | 37| 38| 39| 3A| 3B | 3C| 3D SE]| SF
4 SP ¢ - < (+ ||Notel
0100 ||(64)| (65)|(66) | (67)|(68) | (69)| (70) || (71)| (72) || (73) | (74) || (75) | (76) || (77) || (78) || (79)
40 || 41 |[42 || 43 || 44 || 45 || 46 || 47 || 48 || 49 || 4A || 4B || 4C || 4D || 4E || 4F

49

& ! $ *) ; -
01501 (80) || (81) || (82) || (83) || (84) || (85) || (86) || (87) || (88) || (89) || (90) || (91) || (92) |1 (93) || (94) || (95)
50 || 51 || 52 || 53 || 54 || 55 || 56 || 57 || 58 || 59 || 5A || 5B || 5C || 5D || 5E || 5F
= / | , % _ > ?
01610 (96) || (97) || (98) || (99) ||(100)|{(101)(|(102)||(103)|(104)||(105)|{(106)|/(107)|| (108) ||(109)|| (110) |{(111)
60 || 61 || 62 || 63 || 64 || 65 || 66 || 67 || 68 || 69 || 6A || 6B || 6C || 6D || 6E || 6F
) : # @ ' = "
01711 (112)({(113)(|(114)||(115)||(116)||(117)|{(118)||(119)|[(120)||(121)||(122)||(123)|| (124) ||(125)|| (126) ||(127)
70 71 72 73 74 75 76 77 78 79 || 7A || 7B 7C 7D 7E 7F
8 a b c d e f g h i
1000 (128)|[(229)(|(130)|[(131)||(132)||(133)|((134)(|(135)|((136)||(137)||(138)||(139)|| (140) ||(141)|| (142) ||(143)
80 || 81 || 82 || 83 || 84 || 85 || 86 || 87 || 88 || 89 || BA || 8B || 8C || 8D || 8E || 8F
9 i k I m n (o] p q r
1001 (144)({(145)(|(146)|((147)|/(148)||(149)||(150)(/(151)|[(152)||(153)||(154)||(155)|| (156) ||(157)|| (158) ||(159)
90 || 91 |[92 || 93 || 94 || 95 || 96 || 97 || 98 || 99 || 9A || 9B || 9C || 9D || 9E || 9F
A = S t u \% w X y z
1010 (160)|(161)(/(162)|((163)||(164)||(165)||(166)|/(167)|((168)(|(169)|((170)||(171)|| (172) ||(173)|| (174) ||(175)
A0 || A1 || A2 || A3 || A4 || A5 || A6 || A7 || AB || A9 || AA || AB || AC || AD || AE || AF
1(;311 (176)([(177)(|(178)|(179)(|(180)||(181)|(182)||(183)|((184)||(185)||(186)||(187)|| (188) ||(189)|| (190) ||(191)
BO | B1 | B2 | B3| B4 B5| B6 | B7| B8 | B9 | BA| BB | BC ||[BD | BE || BF
C { A B C D E F G H I Note2 Note3
1100 (192)((193)(|(194)|((195)|/(196)||(197)|(198)(|(199)|((200)||(201)||(202)||(203)|| (204) ||(205)|| (2086) ||(207)
CO|fCl1|C2| C3(|C4|C5|C6|C7|CB|CIO9|CA|CBI| CC|CD| CE| CF
D } J K L M N (0] P Q R
1101 (208)|[(209)(|(210)|((211)(|(212)||(213)||(214)||(215)||(216)||(217)||(218)||(219)|| (220) ||(221)|| (222) ||(223)
DO (| D1 || D2 || D3 || D4 || D5 || D6 || D7 || D8 || D9 || DA || DB DC || DD || DE DF
E \ S T u \Y w X Y z Note4
1110 (224)|(225)||(226)|((227)/(228)||(229)||(230)||(231)|((232)||(233)||(234)||(235)|| (236) ||(237)|| (238) ||(239)
EO || E1 || E2 | E3 || E4 || E5 || E6 || E7 || E8 || E9 || EA || EB || EC || ED || EE || EF
F 0 1 2 3 4 5 6 7 8 9
1111 (240)|((241)(|(242)|((243)||(244)||(245)||(246)||(247)||(248)||(249)||(250)||(251)|| (252) ||(253)|| (254) ||(255)
FO || F1 || F2 || F3 || F4 || F5 || F6 || F7 || F8 || F9 || FA || FB || FC || FD || FE || FF

The following EBCDIC characters have no equivalents in the
ASCII or ISO-8859 character sets used on the Internet, and cannot
be displayed in this table.

(1) Code 79 is a solid vertical bar, similar to the broken vertical bar
(character 106).

(2) Code 204 is the mathematics integration symbol.

(3) Code 206 is a "Y" drawn with only right angles.

(4) Code 236 is a horizontally-flipped "h".

In this table, the code or symbol name is shown on the first
line, followed by the decimal value for that code or symbol, followed
by the hexadecimal value. The binary value can be computed
based on the row and column where the code or symbol resides, or
directly from the hexadecimal value. For example, the character "+"
has the binary value "0100 1110", with "0100" taken from the row
and "1110" taken from the column. Similarly, the lowercase letter 'p’
has the binary value "1001 0111".

50

3.10 UNICODE

Fundamentally, computers just deal with numbers. They
store letters and other characters by assigning a number for each
one. Before Unicode was invented, there were hundreds of different
encoding systems for assigning these numbers. No single encoding
could contain enough characters: for example, the European Union
alone requires several different encodings to cover all its
languages. Even for a single language like English no single
encoding was adequate for all the letters, punctuation, and
technical symbols in common use.

These encoding systems also conflict with one another. That
is, two encodings can use the same number for two different
characters, or use different numbers for the same character. Any
given computer (especially servers) needs to support many
different encodings; yet whenever data is passed between different
encodings or platforms, that data always runs the risk of corruption.

Unicode is changing all that!

Unicode provides a unique number for every character, no
matter what the platform, no matter what the program, no matter
what the language. The Unicode Standard has been adopted by
such industry leaders as Apple, HP, IBM, JustSystems, Microsoft,
Oracle, SAP, Sun, Sybase, Unisys and many others. Unicode is
required by modern standards such as XML, Java, ECMAScript
(JavaScript), LDAP, CORBA 3.0, WML, etc., and is the official way
to implement ISO/IEC 10646. It is supported in many operating
systems, all modern browsers, and many other products. The
emergence of the Unicode Standard, and the availability of tools
supporting it, are among the most significant recent global software
technology trends.

Incorporating Unicode into client-server or multi-tiered
applications and websites offers significant cost savings over the
use of legacy character sets. Unicode enables a single software
product or a single website to be targeted across multiple platforms,
languages and countries without re-engineering. It allows data to be
transported through many different systems without corruption.

311 QUESTIONS

1. What are binary codes? Why are they used?

2. Explain the error detecting codes and how are they used
with examples.

3. Explain the error correcting codes and how are they used
with examples.

51

4. Explain geometric representation of binary numbers.
5. What is ASCII code? Explain.
6. Explain UNICODE.

312 FURTHER READING

Digital Electronics - An Introduction to Theory and Practice
by W H Gothmann

Computer Architecture and Parallel Processing by Kai
Hwang, Faye A Briggs , McGraw Hill

Computer Architecture and Organization by William
Stallings

Fundamentals of Computer organization and Design by
Sivarama P. Dandamudi

http://en.wikipedia.org/wiki/Binary codes
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Error detection
http://en.wikipedia.org/wiki/ASCII

52

3

BOOLEAN ALGEBRA AND LOGIC GATES

Unit Structure
3.0: Objectives

3.1 Boolean Logic
3.2 Logic Gates
3.2.1 Not gate
3.2.2 The "buffer" gate
3.2.3 The AND gate
3.2.4 The OR gate
3.3 Universal Gates
3.3.1 Nand gate
3.3.2 Nor gate
3.4 Other Gates
3.4.1 The Exclusive-Or gate
3.4.2 The Exclusive-Nor gate
3.5 Boolean algebra
3.6 Laws of boolean algebra
3.7 Questions
3.8 Further reading

3.0 OBJECTIVES:

After completing this chapter, you will be able to:

Understand the concept of Boolean Logic

Learn the concept of Logic gates with the help of Diagrams.
Understanding the Universal Gates and their circuit
implications.

Learn about Exclusive OR & NOR gates.

Understand the Boolean algebra and laws of Boolean
Algebra for use in implementation.

5

S

R/
°

5

S

R/
°

3

%

3.1 BOOLEAN LOGIC:

Boolean logic is named after a 19th Century English
clergyman, George Boole, who was also a keen amateur

53

mathematician and formalised the mathematics of a logic based on
a two-valued (TRUE and FALSE) system.

In Boolean logic any variable can have one of only two
possible values, TRUE or FALSE. In some systems these may be
called HIGH and LOW or perhaps ONE and ZERO, but whatever
the names there are only two possible values. There is no such
thing as "in between" or "it has no value". If a variable is not TRUE,
then it must be FALSE.

3.2 LOGIC GATES:

Practical devices which obey the laws of Boolean logic can
be made in a variety of different forms. In the earlier part of the
Century, relays were used extensively for simple logic systems
such as the controllers for lifts (elevators) and traffic lights. Victorian
signal boxes used mechanical levers and rods for operating points
and signals which had logical interlocks, and in some hazardous
environments where the use of electricity is avoided, fluid logic
circuits are used. In this course we are interested in electronic logic
based on the modern, silicon, integrated-circuit technology.

In electronic logic, the value of a logic signal on an input or
output is usually defined by the voltage. If the voltage is above a
certain value, it is a logic ONE. If it is below that value it is a logic
ZERO. Circuits are produced (by the million!) which have a
(Boolean) output value, or values, which are directly determined by
the (Boolean) values on the inputs. In these notes a logical value of
ONE or TRUE will often be written as '1' and a value which is
ZERO or FALSE written as '0'.

3.2.1 NOT gate

While the binary numeration system is an interesting
mathematical abstraction, we haven't yet seen its practical
application to electronics. This chapter is devoted to just that:
practically applying the concept of binary bits to circuits. What
makes binary numeration so important to the application of digital
electronics is the ease in which bits may be represented in physical
terms. Because a binary bit can only have one of two different
values, either 0 or 1, any physical medium capable of switching
between two saturated states may be used to represent a bit.
Consequently, any physical system capable of representing binary
bits is able to represent numerical quantities, and potentially has
the ability to manipulate those numbers. This is the basic concept
underlying digital computing.

54

Electronic circuits are physical systems that lend themselves
well to the representation of binary numbers. Transistors, when
operated at their bias limits, may be in one of two different states:
either cutoff (no controlled current) or saturation (maximum
controlled current). If a transistor circuit is designed to maximize the
probability of falling into either one of these states (and not
operating in the linear, or active, mode), it can serve as a physical
representation of a binary bit. A voltage signal measured at the
output of such a circuit may also serve as a representation of a
single bit, a low voltage representing a binary "0" and a (relatively)
high voltage representing a binary "1." Note the following transistor
circuit:

Transisior in cutoff

"ow" input = "high" output

0V ="low" logic level (0)
5 v ="high" logic level (1)

Transistor in saturation

:

e | |‘__' >
s o om0V

Vo,=3V /

"high" input = "low" output

0V ="low" logic level (D)
5 v ="high" logic level (1)

In this circuit, the transistor is in a state of saturation by
virtue of the applied input voltage (5 volts) through the two-position
switch. Because it's saturated, the transistor drops very little voltage
between collector and emitter, resulting in an output voltage of
(practically) O volts. If we were using this circuit to represent binary
bits, we would say that the input signal is a binary "1" and that the

55

output signal is a binary "0." Any voltage close to full supply voltage
(measured in reference to ground, of course) is considered a "1"
and a lack of voltage is considered a "0." Alternative terms for these
voltage levels are high (same as a binary "1") and low (same as a
binary "0"). A general term for the representation of a binary bit by a
circuit voltage is logic level.

Moving the switch to the other position, we apply a binary "0"
to the input and receive a binary "1" at the output:

What we've created here with a single transistor is a circuit
generally known as a logic gate, or simply gate. A gate is a Special
type of amplifier circuit designed to accept and generate voltage
signals corresponding to binary 1's and 0's. As such, gates are not
intended to be used for amplifying analog signals (voltage signals
between 0 and full voltage). Used together, multiple gates may be
applied to the task of binary number storage (memory circuits) or
manipulation (computing circuits), each gate's output representing
one bit of a multi-bit binary number. Just how this is done is a
subject for a later chapter. Right now it is important to focus on the
operation of individual gates.

The gate shown here with the single transistor is known as
an inverter, or NOT gate, because it outputs the exact opposite
digital signal as what is input. For convenience, gate circuits are
generally represented by their own symbols rather than by their
constituent transistors and resistors. The following is the symbol for
an inverter:

Inverter, or NOT gate

Input —I>07 Output

An alternative symbol for an inverter is shown here:

Input *CDf Output

One common way to express the particular function of a gate
circuit is called a truth table. Truth tables show all combinations of
input conditions in terms of logic level states (either "high" or "low,"
"1" or "0," for each input terminal of the gate), along with the
corresponding output logic level, either "high" or "low." For the
inverter, or NOT, circuit just illustrated, the truth table is very simple
indeed:

56

NOT gate truth table

Equation for NOT gate
Y=A
3.2.2 The "buffer" gate

If we were to connect two inverter gates together so that the
output of one fed into the input of another, the two inversion
functions would "cancel" each other out so that there would be no
inversion from input to final output:

Double inversion

Logic state re-inverted
to original status

oot P

0 inverted into a 1

While this may seem like a pointless thing to do, it does have
practical application. Remember that gate circuits are signal
amplifiers, regardless of what logic function they may perform. A
weak signal source (one that is not capable of sourcing or sinking
very much current to a load) may be boosted by means of two
inverters like the pair shown in the previous illustration. The logic
level is unchanged, but the full current-sourcing or -sinking
capabilities of the final inverter are available to drive a load
resistance if needed.

For this purpose, a special logic gate called a buffer is
manufactured to perform the same function as two inverters. Its
symbol is simply a triangle, with no inverting "bubble" on the output
terminal:

57

"Buffer” gate

Inputgl} Output

Input Output
0 0
1 1

Equation for Buffer gate
Y=A

Inverters and buffers exhaust the possibilities for single-input
gate circuits. What more can be done with a single logic signal but
to buffer it or invert it? To explore more logic gate possibilities, we
must add more input terminals to the circuit(s).

Adding more input terminals to a logic gate increases the
number of input state possibilities. With a single-input gate such as
the inverter or buffer, there can only be two possible input states:
either the input is "high" (1) or it is "low" (0). As was mentioned
previously in this chapter, a two input gate has four possibilities (00,
01, 10, and 11). A three-input gate has eight possibilities (000, 001,
010, 011, 100, 101, 110, and 111) for input states. The number of
possible input states is equal to two to the power of the number of
inputs:

Number of possible input states = 2"

Where,
n = Number of inputs

This increase in the number of possible input states
obviously allows for more complex gate behavior. Now, instead of
merely inverting or amplifying (buffering) a single "high" or "low"
logic level, the output of the gate will be determined by whatever
combination of 1's and 0's is present at the input terminals.

Since so many combinations are possible with just a few
input terminals, there are many different types of multiple-input
gates, unlike single-input gates which can only be inverters or
buffers.

3.2.3 The AND gate

58

One of the easiest multiple-input gates to understand is the
AND gate, so-called because the output of this gate will be "high”
(1) if and only if all inputs (first input and the second input and . . .)
are "high" (2). If any input(s) are "low" (0), the output is guaranteed
to be in a "low" state as well.

2-input AND gate 3-input AND gate
Pl — Input,
Output Inputz — Qutput
Inputy — Input,—

In case you might have been wondering, AND gates are
made with more than three inputs, but this is less common than the
simple two-input variety.

The logic diagram and the truth table of AND gate are shown
below:

—~|—~|C|D|
~|lC|l~|C|H
o

What this truth table means in practical terms is shown in the
following sequence of illustrations, with the 2-input AND gate
subjected to all possibilities of input logic levels. An LED (Light-
Emitting Diode) provides visual indication of the output logic level:

59

Inputy =1
(nput; = 0
Output= 0 {ro light
vII
IMpLt, Yo

‘:*'l—l f‘* utput
Inputy —

Inputy = 1
Inputy = 1
Qutput= 1 (light)

3.2.4 The OR gate

Our next gate to investigate is the OR gate, so-called
because the output of this gate will be "high" (1) if any of the inputs
(first input or the second input or . . .) are "high" (1). The output of
an OR gate goes "low" (0) if and only if all inputs are "low" (0).

2-input OR gate 3-input OR gate

Input, :npu:A
Output npulg Cutput
Inputg Input

60

The logic diagram and the truth table of OR gate are shown below:

OR gate
Input,q:D_ Output
Inputg

Output
0

[= =1 i =]
.—D.—DU:J

1
1
1

The following sequence of illustrations demonstrates the OR
gate's function, with the 2-inputs experiencing all possible logic
levels. An LED (Light-Emitting Diode) provides visual indication of
the gate's output logic level:

vﬂ:
T,
A) Qutput

Inputy

Input, = 0O
Imputy = O
Output= 0 o fight)

Inputy = 1

Inputy = 0O
Output= 1 [light]

3.3 UNIVERSAL GATES

NOT, AND and OR gates are alled as baisc gates. The
NAND and NOR gates are called as Universal gates as any gate
can be derived using these gates.

61

3.3.1 NAND gate:

A variation on the idea of the AND gate is called the NAND
gate. The word "NAND" is a verbal contraction of the words NOT
and AND. Essentially, a NAND gate behaves the same as an AND
gate with a NOT (inverter) gate connected to the output terminal.
To symbolize this output signal inversion, the NAND gate symbol
has a bubble on the output line. The truth table for a NAND gate is
as one might expect, exactly opposite as that of an AND gate:

NAND gate
Input, —
P } Qutput
Inputy—
A| B | Output
0|0 1
0|1 1
1|0 1
1|1 0

Equivalent gate circuit
Input, —
Pl D—DO— Output
Inputg,—
NOT gate from NAND gate:

5 '_3 =%

AND gate from NAND gate:

1>

62

OR gate from NAND gate:

= .
A
— —
B ¥=AB
=15 343
=A+58

3.3.2 NOR gate:
As you might have guessed, the NOR gate is an OR gate

with its output inverted, just like a NAND gate is an AND gate with
an inverted output.

The NOR gate has output high when both of its inputs are
low. The symbolic diagram and the truth table of NOR gate is

shown below:

NOR gate
Input
P jﬂ‘:DD* Qutput
Inputg

A| B | Output

0|0 1

01 0

10 0

1|1 0

Equivalent gate circuit

InDUt,q:D_DO, Output
Inputg

NOT gate from NOR gate:

63

AND gate from NOR gate:

et
+
|

I
S N |

ty Bwll ol

OR gate from NOR gate:

1 O>—0) -

So we have seen that all the basic gates can be constructed
using NAND and NOR gates and hence they are called Universal
gates.

3.4 OTHER GATES

3.4.1 The Exclusive-OR gate

Exclusive-OR gates output a "high" (1) logic level if the
inputs are at different logic levels, either 0 and 1 or 1 and O.
Conversely, they output a "low" (0) logic level if the inputs are at the
same logic levels. The Exclusive-OR (sometimes called XOR) gate
has both a symbol and a truth table pattern that is unique:

Exclusive-OR gate

Input,)D Output
Inputg

A| B | Output

00 0

0|1 1
110 1
1|1 0

There are equivalent circuits for an Exclusive-OR gate made
up of AND, OR, and NOT gates, just as there were for NAND,
NOR, and the negative-input gates. A rather direct approach to

64
simulating an Exclusive-OR gate is to start with a regular OR gate,
then add additional gates to inhibit the output from going "high" (1)
when both inputs are "high" (1):

Exclusive-OR equivalent circuit

Input , ¢ } Output

Inputg

Qutput

I—‘l—‘DCJ:b’
o

] e |

In this circuit, the final AND gate acts as a buffer for the
output of the OR gate whenever the NAND gate's output is high,
which it is for the first three input state combinations (00, 01, and
10). However, when both inputs are "high" (1), the NAND gate
outputs a "low" (0) logic level, which forces the final AND gate to
produce a "low" (0) output.

Another equivalent circuit for the Exclusive-OR gate uses a
strategy of two AND gates with inverters, set up to generate "high"
(1) outputs for input conditions 01 and 10. A final OR gate then
allows either of the AND gates' "high" outputs to create a final
"high" output:

65

Exclusive-OR equivalent circuit

-
h Output
1P

Input,

Inputg

A| B | Output

0|0 0

0|1 1
110 1
1|1 0

3.4.2 The Exclusive-NOR gate

Finally, our last gate for analysis is the Exclusive-NOR gate,
otherwise known as the XNOR gate. It is equivalent to an
Exclusive-OR gate with an inverted output. The truth table for this
gate is exactly opposite as for the Exclusive-OR gate:

Exclusive-NOR gate
Input
P P‘:)DO— Output
Inputg

Output

~[=[]
— O~ O @
—

=l =0 =]

Equivalent gate circuit

|ﬂpUtAjW Output
Inputg

66

3.5 BOOLEAN ALGEBRA

The most obvious way to simplify Boolean expressions is to
manipulate them in the same way as normal algebraic expressions
are manipulated. With regards to logic relations in digital forms, a
set of rules for symbolic manipulation is needed in order to solve for
the unknowns.

A set of rules formulated by the English mathematician
George Boole describe certain propositions whose outcome would
be either true or false. With regard to digital logic, these rules are
used to describe circuits whose state can be either, 1 (true) or O
(false). In order to fully understand this, the relation between the
AND gate, OR gate and NOT gate operations should be
appreciated. A number of rules can be derived from these relations
as the following Table demonstrates.

P1: X=0o0orX=1
P2:0.0=0
P3:1+1=1
P4:0+0=0
P5:1.1=1
P6:1.0=0.1
P7:1+0=0+

0

1=1

3.6 LAWS OF BOOLEAN ALGEBRA

The following table shows the basic Boolean laws. Note that
every law has two expressions, (a) and (b). This is known as
duality. These are obtained by changing every AND(.) to OR(+),
every OR(+) to AND(.) and all 1's to 0O's and vice-versa.
It has become conventional to drop the . (AND symbol) i.e. A.B is
written as AB.

T1: Commutative Law
@A+B=B+A

() AB=BA

T2 : Associate Law
@A+B)+C=A+B+C)
(b)(AB)C=ABCOC)

T3 : Distributive Law
@AMB+C)=AB+AC
)A+(BC)=(A+B)(A+C)
T4 : Identity Law
@A+A=A

(b)AA=A

67

T5:

(@) AB+AB=4
(b) (A+B)(A+E) = A
T6 : Redundance Law
@A+AB=A
(b)AA+B)=A
T7:

@0+A=A
(b)OA=0

T8 :

@1+A=1
(b)LA=A

T9:

(@) A+4=1

(b)y A4=0

T10:

(@) A+ AB=4+B
(b) A(A+B)=4AB
T11: De Morgan's Theorem
(@) (A+B)=4 B
(b) (AB)= A+ B

Examples:

ab+ab’ +ab =a(b+b’) +ab
=a*l+abByP5

=a+abBy

=za+ab+0

—a+ab+aa

—at+b(a+a)

=a+bel

=a+b

(@b +ab’ +b) = (a'(b+b’) + b
=@ +by

=((ab))

=ab

b(a+c) + ab’ + bc’ + ¢ =ba+bc+ab’ +bc +c
=a(b+b)+b(c+c) +c
=asl+bel+c

—a+b+c

68

QUESTIONS:

PN E

What are basic gates? Explain.

What are universal gates? Why are they so called?
Explain XOR and XNOR gates.

Construct the following gates from universal (both NAND
and NOR) gates:

AND GATE

OR GATE

NOT GATE

XOR GATE

e. XNOR GATE

. State and prove De’ Morgans Laws.

. State and prove the laws of Boolean algebra.

. Prove the following using Laws of Boolean Algebra:
(A+AB)(A+AB)(CD+CDA+CD+CDA)=A

XYZ+XYZ+XYZ+XYZ=XY+Z

iA+B_CiA§+ﬁ£):zBC

(AB+ ABC)ABC =0

apow

FURTHER READING:

0’0

3

%

0’0

Digital Electronics - An Introduction to Theory and Practice

by W H Gothmann

Computer Architecture and Parallel Processing by Kai

Hwang, Faye A Briggs , McGraw Hill

Computer Architecture and Organization by William

Stallings

Fundamentals of Computer organization and Design by

Sivarama P. Dandamudi

http://en.wikipedia.org/wiki/Logic gates
http://en.wikipedia.org/wiki/Universal logic gate
http://en.wikipedia.org/wiki/Boolean algebra

69

A

CANONICAL FORMS AND KARNAUGH
MAPS

Unit Structure

4.0 Objectives

4.1 Canonical Forms

4.2 Karnaugh Maps

4.3 Simplifying Boolean Expressions Using Karnaugh Maps
4.4 Maxterms and Minterms

4.5 Quine Mcclusky Method

4.6 Questions

4.7 Further Reading

4.0 OBJECTIVES

After completing this chapter, you will be able to:
¢ Learn about the CANONICAL FORMS.
Understand the building and working of KARNAUGH MAP.

Using the KARNAUGH MAP for solving the Boolean
expression.

Understanding the concept of Maxterms and Minterms

Learn the Quine McClusky Method for finding a minimum-
cost sum-of-products.

L)

3

%

5

S

R/
°

3

%

4.1 CANONICAL FORMS

Since there are a finite number of boolean functions of n
input variables, yet an infinite number of possible logic expressions
you can construct with those n input values, clearly there are an
infinite number of logic expressions that are equivalent (i.e., they
produce the same result given the same inputs). To help eliminate
possible confusion, logic designers generally specify a boolean
function using a canonical, or standardized, form. For any given
boolean function there exists a unique canonical form. This
eliminates some confusion when dealing with boolean functions.

70

Actually, there are several different canonical forms. We will
discuss only two here and employ only the first of the two. The first
is the so-called sum of minterms and the second is the product of
maxterms. Using the duality principle, it is very easy to convert
between these two.

A term is a variable or a product (logical AND) of several
different literals. For example, if you have two variables, A and B,
there are eight possible terms: A, B, A’, B’, A'B’, A'B, AB’, and AB.
For three variables we have 26 different terms: A, B, C, A’, B’, C’,
A'B’, A'B, AB’, AB, A’C’, A'C, AC’, AC, B'C', BC, BC', BC, AB'C,
AB’C’, A'BC’, ABC’, A'B’'C, AB’C, A’'BC, and ABC. As you can see,
as the number of variables increases, the number of terms
increases dramatically. A minterm is a product containing exactly n
literals. For example, the minterms for two variables are A’'B’, AB’,
A’B, and AB. Likewise, the minterms for three variables A, B, and C
are A'B'C’, AB'C’, A BC’, ABC’, A’B'C, AB'C, A'BC, and ABC. In
general, there are 2" minterms for n variables. The set of possible
minterms is very easy to generate since they correspond to the
sequence of binary numbers:

Binary Minterm
Equivalent

{CBA)
000 A'B'C
001 AB'C
010 A'BC’
011 ARC’
100 A'B'C
101 AR'C
110 A'BC
111 ARBC

4.2 KARNAUGH MAPS

A Karnaugh map comprises a box for every line in the truth table;
the binary value for each box is the binary value of the input terms
in the corresponding table row. Unlike a truth table, in which the
input values typically follow a standard binary sequence (00, 01, 10,
11), the Karnaugh map's input values must be ordered such that
the values for adjacent columns vary by only a single bit, for
example, 00, 01, 11, and 10. This ordering is known as a Gray
code.

71

We use a Karnaugh map to obtain the simplest possible
Boolean expression that describes a truth table.

Each row in the table (or minterm) is equivalent to a a cell on
the Karnaugh Map.

Example #1:
Here is a two-input truth table for a digital circuit:
Row Inputs Output
A B F
Row#0 |0 0 0
Row & | 0 1 1
Row #2 1 0 1
Row # 3 1 1 1
The corresponding K-map is
A 0 1
g | Row#0: 0 Row # 1: 1
) Row #2: 1 Row # 3: 1

Example #2:

Here is a three-input truth table for a digital

Row Inputs

A
Row #0 | 0
Row#1 |0
Row#2 |0

0
1
1
1
1

Row # 3
Row #4
Row # 5
Row #6
Row #7

ol el =] =1 Ll Bl =] =] [-~

ol =0 Ll =1 il =1 Ll =1 [']
=
=
=]
=

The corresponding K-map is

72

AB
c 00 01 11 10
Row # 0 Row #2 Row #6 Row # 4
0 1 0 1
1 Row # 1 Row # 3 Row #7 Row # 5
1 1 1 1
Example #3:
Here is a four-input truth table for a digital circuit:
Row Inputs Output

A B C D F
Row #0 0 0 0 0 0
Row # 1 0 0 0 1 1
Row #2 0 0 1 0 1
Row #3 0 0 1 1 1
Row # 4 0 1 0 0 1
Row #5 0 1 0 1 1
Row # 6 0 1 1 0 0
Row #7 0 1 1 1 1
Row # 8 1 0 0 0 1
Row #9 1 0 0 1 0
Row#10 |1 0 1 0 1
Row#11 |1 0 1 1 1
Row#12 |1 1 0 0 1
Row#13 |1 1 0 1 1
Row#14 |1 1 1 0 1
Row#15 |1 1 1 1 0

73

The corresponding K-map is

AB
D 00 01 11 10
00 Row # 0 Row # 4 Row # 12 Row # 8
1] 1 1 1
01 Row #1 Row # 5 Row # 13 Row # 9
1 1 1 0
Row # 3 Row #7 Row # 15 Row # 11
11
1 1 0 1
Row # 2 Row # 6 Row # 14 Row # 10
10
1 0 1 1

4.3 SIMPLIFYING BOOLEAN EXPRESSIONS USING
KARNAUGH MAP

To simplify the resulting Boolean expression using a
Karnaugh map adjacent cells containing one are looped together.
This step eliminated any terms of the form AA .

Adjacent cells means:

1. Cells that are side by side in the horizontal and vertical
directions (but not diagonal).

2. For a map row: the leftmost cell and the rightmost cell.

3. For a map column: the topmost cell and the bottom most cell.

4, For a 4 variable map: cells occupying the four corners of the
map.

Cells may only be looped together in twos, fours, or eights.
As few groups as possible must be formed. Groups may overlap
one another and may contain only one cell.

The larger the number of 1s looped together in a group the
simpler is the product term that the group represents.

74
Example #1:

Simplifying the corresponding K-map of a two-input truth
table for a digital circuit:

NP

g | Row#0: 0 Row #1: 1
e e
L
< Row #2: 1 \Rﬂw#3:1)
1 [

Loop 2

In Loop 1 the variable A has both logic 0 and logic 1 values in the
same loop. B has a value of 1. Hence minterm equation is: F = B.

In Loop 2 Variable B has both logic 0 and 1 values in the same
loop. A = 1, hence minterm equation is: F = A.

The overall Boolean expression for F is therefore: F= A + B
Example #2:

Simplifying the corresponding K-map of a three-input truth
table for a digital circuit:

Loop 1 Loop 2
AB
C 00 /;1\ 11 m
0

Row # O /Row#z Bow# 6 Row # 4
"} _____-_-_-_'
.--"'"_-.-._

1 Row # 1 Row# 3 Row# 7 Row # 5
1 \ 1 1 1 >

Loop 3

75

In Loop 1 the variable C has both logic 0 and logic 1 values in the
same loop. A has a value of 0 and B has a logic value of 1. Hence
minterm equation is: F []

In Loop 2 the variable C has both logic 0 and 1 values in the same
loop. A =1 and B = 0, hence minterm equation is: F [

In Loop 3 the two variables A and B both have logic 0 and logic 1
values in the same loop. C has a value of 1. Hence minterm
equation is: F [IC.

The overall Boolean expression for F is therefore: F 1+ 48 + C

Example #3:
Simplifying the corresponding K-map of a four-input truth table for a
digital circuit:

Loop 1 Loop 2 Loop 5
AB

CD

00 Row# 0 RDW#4+ #12 Row# 3 /
o N

Row #11

Row# 1

Loop 3 Loop 4 Loop 2

In Loop 1 the two variables A and D both have logic 0 and
logic 1 values in the same loop. C has a value of 0 and B has a
value of 1. Hence minterm equation is: F [

76

In Loop 2 the two variables B and C both have logic 0 and
logic 1 values in the same loop. A has a value of 1 and D has a
value of 0. Hence minterm equation is: F [

In Loop 3 the variable D has logic 0 and logic 1 values in the
same loop. A and B both have a value of 0 and C has a value of 1.
Hence minterm equation is: F (17

In Loop 4 the two variables B and C both have logic 0 and
logic 1 values in the same loop. A has a value of 0 and D has a
value of 1. Hence minterm equation is: F [

In Loop 5 the variable C has logic 0 and logic 1 values in the
same loop. A and D both have s a value of 1 and B has a value of
0. Hence minterm equation is: F [1D

The overall Boolean expression for F is therefore: F
J . 4+ABC . D

4.4 MAXTERMS AND MINTERMS

Sum-Of-Product (SOP) and Product-Of-Sums solution (POS):

out= ABC

out= ABC . ABC_
Minterm= ABC Minterm= ABC
Numeric= 111 Numeric= 010

BC C T
ANOD 0111010 ANpo 0111h0

o o [of[c o [o]o]o]1
1 lolo[1']o 1 lolo oo
Qut= ABC Qut= ABC

A minterm is a Boolean expression resulting in 1 for the
output of a single cell, and Os for all other cells in a Karnaugh map,
or truth table. If a minterm has a single 1 and the remaining cells as
Os, it would appear to cover a minimum area of 1s. The illustration
above left shows the minterm ABC, a single product term, as a
single 1 in a map that is otherwise 0s. We have not shown the 0s in
our Karnaugh maps up to this point, as it is customary to omit them
unless specifically needed. Another minterm A'BC' is shown above
right. The point to review is that the address of the cell corresponds
directly to the minterm being mapped. That is, the cell 111
corresponds to the minterm ABC above left. Above right we see
that the minterm A'BC' corresponds directly to the cell 010. A
Boolean expression or map may have multiple minterms.

77

Referring to the above figure, Let's summarize the procedure
for placing a minterm in a K-map:

. Identify the minterm (product term) term to be mapped.

. Write the corresponding binary numeric value.

. Use binary value as an address to place a 1 in the K-map

. Repeat steps for other minterms (P-terms within a Sum-Of-
Products).

Qut= ABC +ABRC

cC
ANOD 011110
o [o]o]ol1
1 [o]o o

Numeric= E 1 g ‘.)]‘_ﬁ
Minterm= ABC ABC

cut= ABC + ABC

A Boolean expression will more often than not consist of
multiple minterms corresponding to multiple cells in a Karnaugh
map as shown above. The multiple minterms in this map are the
individual minterms which we examined in the previous figure
above. The point we review for reference is that the 1s come out of
the K-map as a binary cell address which converts directly to one or
more product terms. By directly we mean that a O corresponds to a
complemented variable, and a 1 corresponds to a true variable.
Example: 010 converts directly to A'BC'. There was no reduction in
this example. Though, we do have a Sum-Of-Products result from
the minterms.

Referring to the above figure, Let's summarize the procedure
for writing the Sum-Of-Products reduced Boolean equation from a

K-map:

. Form largest groups of 1s possible covering all minterms.
Groups must be a power of 2.

. Write binary numeric value for groups.

. Convert binary value to a product term.

. Repeat steps for other groups. Each group yields a p-terms

within a Sum-Of-Products.

Nothing new so far, a formal procedure has been written
down for dealing with minterms. This serves as a pattern for dealing
with maxterms.

Next we attack the Boolean function which is O for a single
cell and 1s for all others.

78

Out = (A+B+C)
Maxterm = A+B+C
Numeric = 1 1 1

Complement = 0 0 0

Ny 'r_/'
ANQ0/011110

o (0]1]1|1
1|1 f1]1|1

A maxterm is a Boolean expression resulting in a 0 for the
output of a single cell expression, and 1s for all other cells in the
Karnaugh map, or truth table. The illustration above left shows the
maxterm (A+B+C), a single sum term, as a single 0 in a map that is
otherwise 1s. If a maxterm has a single 0 and the remaining cells
as 1s, it would appear to cover a maximum area of 1s.

There are some differences now that we are dealing with
something new, maxterms. The maxterm is a 0, not a 1 in the
Karnaugh map. A maxterm is a sum term, (A+B+C) in our example,
not a product term.

It also looks strange that (A+B+C) is mapped into the cell
000. For the equation Out=(A+B+C)=0, all three variables (A, B, C)
must individually be equal to 0. Only (0+0+0)=0 will equal 0. Thus
we place our sole 0 for minterm (A+B+C) in cell A,B,C=000 in the
K-map, where the inputs are all0 . This is the only case which will
give us a 0 for our maxterm. All other cells contain 1s because any
input values other than ((0,0,0) for (A+B+C) yields 1s upon
evaluation.

Referring to the above figure, the procedure for placing a

maxterm in the K-map is:

. Identify the Sum term to be mapped.

. Write corresponding binary numeric value.

. Form the complement

. Use the complement as an address to place a O in the K-
map

. Repeat for other maxterms (Sum terms within Product-of-
Sums expression).

79

Out = |
Maxterm =

|
+ o+

Numeric =]
Complement = 1

BC 7—_/
ANQ00 0111010

0 |1]1]1)1
1]1]1]0

o

Another maxterm A'+B'+C' is shown above. Numeric 000
corresponds to A'+B'+C'. The complement is 111. Place a 0 for
maxterm (A'+B'+C'") in this cell (1,1,1) of the K-map as shown
above.

Why should (A'+B'+C') cause a 0 to be in cell 111? When
A'+B'+C' is (1'+1'+1"), all 1s in, which is (0+0+0) after taking
complements, we have the only condition that will give us a 0. All
the 1s are complemented to all Os, which is 0 when ORed.

out = (A+B+C)(A+B+C)

Maxterm= (A+B+C) Maxterm= (A+B+C)

Numeric= 1 1 1 Numeric= 1 1 O
Complement= 0 0 0 Complement= 0 0 1

C
Pf{oo 011110

OO0l |1
11111 |1

A Boolean Product-Of-Sums expression or map may have
multiple maxterms as shown above. Maxterm (A+B+C) yields
numeric 111 which complements to 000, placing a 0 in cell (0,0,0).
Maxterm (A+B+C') yields numeric 110 which complements to 001,
placing a 0 in cell (0,0,1).

Now that we have the k-map setup, what we are really
interested in is showing how to write a Product-Of-Sums reduction.
Form the Os into groups. That would be a group of two below. Write
the binary value corresponding to the sum-term which is (0,0,X).
Both A and B are 0 for the group. But, C is both 0 and 1 so we write
an X as a place holder for C. Form the complement (1,1,X). Write
the Sum-term (A+B) discarding the C and the X which held its'
place. In general, expect to have more sum-terms multiplied
together in the Product-Of-Sums result. Though, we have a simple
example here.

80
Qut = (A+B+C)(A+B+C)

C
ANDO0 011110

o (@]
1 1

[1]1

EBC=00Z%X
Complement = 1 1 X

Sum-term =(&4 +B)
out =(A +B)

Let's summarize the procedure for writing the Product-Of-
Sums Boolean reduction for a K-map:

. Form largest groups of Os possible, covering all maxterms.
Groups must be a power of 2.

Write binary numeric value for group.
Complement binary numeric value for group.
. Convert complement value to a sum-term.

. Repeat steps for other groups. Each group yields a sum-
term within a Product-Of-Sums result.

Example:
Simplify the Product-Of-Sums Boolean expression below,
providing a result in POS form.
Cut= (A+B+C+D) (A+B+C+D) (A+B+C+D) (A+B+C+D)
(A+B+C+D) (A+B+C+D) (A+B+C+D)

Solution:

Transfer the seven maxterms to the map below as 0s. Be
sure to complement the input variables in finding the proper cell
location.

Out= (A+B+C+D)(A+B+C+D) (A+B+C+D) (A+B+C+D)
(A+B+C+

BE+C+D)[A+B+C+D)[E+B+C+D)

CD
AMNO0O 01 1110
0o 0 0
01 0 0
11 0

f_/
10 0+—T0"

81

We map the Os as they appear left to right top to bottom on
the map above. We locate the last three maxterms with leader
lines..

Once the cells are in place above, form groups of cells as
shown below. Larger groups will give a sum-term with fewer inputs.
Fewer groups will yield fewer sum-terms in the result.

o CD input complement Sum-term
pRNUIORO e ABCD = X001l > X110 > (B+C+D)
el 9 /0 ABCD = 001 > 110 = (A+C+D)

ABCD = XX10 > X®X01 = (C+D)

o
-
.

0

\ o |
L0 ;"‘.\\E{,
fi—;;ihh_ﬁﬁ

Qut= (B+C+D)(A+C+D){(C+D)

We have three groups, so we expect to have three sum-
terms in our POS result above. The group of 4-cells yields a 2-
variable sum-term. The two groups of 2-cells give us two 3-variable
sum-terms. Details are shown for how we arrived at the Sum-terms
above. For a group, write the binary group input address, then
complement it, converting that to the Boolean sum-term. The final
result is product of the three sums.

Example:
Simplify the Product-Of-Sums Boolean expression below,
providing a result in SOP form.

Qut= (A+ Bici-ﬁj (A+ B+E+D_) {A_+E+C_+E]| (BE+B+C+D)
(A+B+C+D) (A+B+C+D) (A +B+C+D)

Solution:

This looks like a repeat of the last problem. It is except that
we ask for a Sum-Of-Products Solution instead of the Product-Of-
Sums which we just finished. Map the maxterm Os from the
Product-Of-Sums given as in the previous problem, below left.

Out= (A+B+C+D)(A+B+C+D) (A+E+C+D) (A+B+C+D)
(E+B+C+D) (A+B+C+D) (A+B+C+D)

CD CD

AXN00 01 1110 ApN00 01 11 10
0o a 0 0011101171 (0
01 0 0 01 010
11 0 11t1 1 J1 |0
10 0 0 10f1)0 (1|0

82

Then fill in the implied 1s in the remaining cells of the map above
right.

HE]

=
]
=
Ll
4=

i
i
"-\ o
==
[
o |
¥

=

X7~

CEE
o

=

= e
——

=

-

i
o
P
=
\-\"1_
o
r"'_..-.
el
o

Oout= CD + CD+ ABD

Form groups of 1s to cover all 1s. Then write the Sum-Of-
Products simplified result as in the previous section of this chapter.
This is identical to a previous problem.

Out= (A+B+C+D)(A+B+C+D) (A+B+C+D) (A+B+C+D)
(A+B+C+D) (A+B+C+D) (A+B+C+D)
cD cCD
ARND0 0111 10 ARN00 011110
oo @ JoY oof 1y 1Y
o[o) [o ouff 1 1 |
11 0 || 1 1 | D
10 |0y hof 10h1] 14

Out= CD + CD+ ABRD

Out= (B4+C+D)(A4+C+D)(C+D)

Above we show both the Product-Of-Sums solution, from the
previous example, and the Sum-Of-Products solution from the
current problem for comparison. Which is the simpler solution? The
POS uses 3-OR gates and 1-AND gate, while the SOP uses 3-AND
gates and 1-OR gate. Both use four gates each. Taking a closer
look, we count the number of gate inputs. The POS uses 8-inputs;
the SOP uses 7-inputs. By the definition of minimal cost solution,
the SOP solution is simpler. This is an example of a technically
correct answer that is of little use in the real world.

The Dbetter solution depends on complexity and the logic
family being used. The SOP solution is usually better if using the
TTL logic family, as NAND gates are the basic building block, which
works well with SOP implementations. On the other hand, A POS
solution would be acceptable when using the CMOS logic family
since all sizes of NOR gates are available.

83

Cut= (B+C+D) (A+C+D)(CT+D) Out= CO + CD+ ABD

Out

9

The gate diagrams for both cases are shown above,
Product-Of-Sums left, and Sum-Of-Products right.

Below, we take a closer look at the Sum-Of-Products version
of our example logic, which is repeated at left.

Out= TD + CD+ ABD -
Cut= CD + CD+ ARBD

c l Out rboh Out

D I_ i o L

B A
B

Above all AND gates at left have been replaced by NAND
gates at right.. The OR gate at the output is replaced by a NAND
gate. To prove that AND-OR logic is equivalent to NAND-NAND
logic, move the inverter invert bubbles at the output of the 3-NAND
gates to the input of the final NAND as shown in going from above
right to below left.

Dﬁ_ x_ﬂ Out
S =
c l Out out= TYF DeMorgans

b L out= T+7+% Double negation
r: Cut= X4¥+2Z
B

X Out

hi

£

Out= X+Y¥+Z

Above right we see that the output NAND gate with inverted
inputs is logically equivalent to an OR gate by DeMorgan's theorem
and double negation. This information is useful in building digital
logic in a laboratory setting where TTL logic family NAND gates are
more readily available in a wide variety of configurations than other

types.

84

The Procedure for constructing NAND-NAND logic, in place
of AND-OR logic is as follows:

. Produce a reduced Sum-Of-Products logic design.

. When drawing the wiring diagram of the SOP, replace all
gates (both AND and OR) with NAND gates.

. Unused inputs should be tied to logic High.

. In case of troubleshooting, internal nodes at the first level of

NAND gate outputs do NOT match AND-OR diagram logic
levels, but are inverted. Use the NAND-NAND logic
diagram. Inputs and final output are identical, though.

. Label any multiple packages U1, U2,.. etc.

. Use data sheet to assign pin numbers to inputs and outputs
of all gates.

Example:

Let us revisit a previous problem involving an SOP
minimization. Produce a Product-Of-Sums solution. Compare the
POS solution to the previous SOP.

cut= ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD
CD CD CD
ApN\00 01 1110 Ap\00 01 1110 AN 00 01 1110
oo|f1 1)1} oo 1f1 |1 o 00| 1|1 [}ou
01 ({1 [fy[Ly o1 1 {1 [1 o or1|1 [fo
11 [i2 [lat]1) 11(1|1 |1 |o 11011 |1 fo
10 10lo [o fo [o | 1olto (o Jo3
out= AC + AD + BC + BD out= (E+B) (T +D)

Solution:

Above left we have the original problem starting with a 9-
minterm Boolean unsimplified expression. Reviewing, we formed
four groups of 4-cells to yield a 4-product-term SOP result, lower
left.

In the middle figure, above, we fill in the empty spaces with
the implied 0s. The Os form two groups of 4-cells. The solid blue
group is (A'+B), the dashed red group is (C'+D). This yields two
sum-terms in the Product-Of-Sums result, above right Out =
(A'+B)(C'+D)

85

Comparing the previous SOP simplification, left, to the POS
simplification, right, shows that the POS is the least cost solution.
The SOP uses 5-gates total, the POS uses only 3-gates. This POS
solution even looks attractive when using TTL logic due to simplicity
of the result. We can find AND gates and an OR gate with 2-inputs.

L 4>_0—Dn :
DEti>f

put= AC + AD + BT + BD t= (R+B) (T +D)

The SOP and POS gate diagrams are shown above for our
comparison problem.

Given the pin-outs for the TTL logic family integrated circuit

gates below, label the maxterm diagram above right with Circuit
designators (Ul-a, Ul-b, U2-a, etc), and pin numbers.

FEEREF FEEESEE

CISDT CISE,
oy | R

_l

d
d

[

SRR Sa aiaIaiaa
.

niniziaizialn
;“bbbﬁbﬁ g .
|-D°f| f[>? ’-Dj @D ut- {(E+B) (T +D)
ETETETRIETTE

Each integrated circuit package that we use will receive a
circuit designator: U1, U2, U3. To distinguish between the individual

86

gates within the package, they are identified as a, b, c, d, etc. The
7404 hex-inverter package is Ul. The individual inverters in it are
Ul-a, Ul-b, Ul-c, etc. U2 is assigned to the 7432 quad OR gate.
U3 is assigned to the 7408 quad AND gate. With reference to the
pin numbers on the package diagram above, we assign pin
numbers to all gate inputs and outputs on the schematic diagram
below.

We can now build this circuit in a laboratory setting. Or, we
could design a printed circuit board for it. A printed circuit board
contains copper foil "wiring" backed by a non conductive substrate
of phenolic, or epoxy-fiberglass. Printed circuit boards are used to
mass produce electronic circuits. Ground the inputs of unused
gates.

Ul = 7404
U2 = 7432
Out= (A+B) (T +D) U3 = 7408

Label the previous POS solution diagram above left (third
figure back) with Circuit designators and pin numbers. This will be
similar to what we just did.

ARRERFE R EEERE
vee th vee =

NESISEN
Moo | oL

A 2L E
aigiaigaiaia] 2]) e L e 2

We can find 2-input AND gates, 7408 in the previous
example. However, we have trouble finding a 4-input OR gate in
our TTL catalog. The only kind of gate with 4-inputs is the 7420
NAND gate shown above right.

We can make the 4-input NAND gate into a 4-input OR gate
by inverting the inputs to the NAND gate as shown below. So we

87

will use the 7420 4-input NAND gate as an OR gate by inverting the
inputs.

Y= EE=E+B DeMorgan's —d
Y =A+B Double negation _u} — ®_

We will not use discrete inverters to invert the inputs to the
7420 4-input NAND gate, but will drive it with 2-input NAND gates
in place of the AND gates called for in the SOP, minterm, solution.
The inversion at the output of the 2-input NAND gates supply the
inversion for the 4-input OR gate.

Ul-a

6 2]
U2-b U3-a)8

4
D 5| Out
9 8
| _10|U2< Ul = 7404
= 4 U2 = 7400
12 11 U3 = 7420
13/U2d

Out= (AC) (AD) (BC) (BD) Boolean from diagram

Out= AC + AD + BC + BD DeMorgan's
Out= AC + AD + BC + BD Double negation

The result is shown above. It is the only practical way to
actually build it with TTL gates by using NAND-NAND logic
replacing AND-OR logic.

4.5 QUINE MCCLUSKY METHOD

The Quine-McCluskey method is an exact algorithm which
finds a minimum-cost sum-of-products implementation of a Boolean
function. This handout introduces the method and applies it to
several examples.

There are 4 main steps in the Quine-McCluskey algorithm:
1. Generate Prime Implicants
2. Construct Prime Implicant Table

88

3. Reduce Prime Implicant Table
1. Remove Essential Prime Implicants
2. Row Dominance
3. Column Dominance

4. Solve Prime Implicant Table

In Step #1, the prime implicants of a function are generated
using an iterative procedure. In Step #2, a prime implicant table is
constructed. The columns of the table are the prime implicants of
the function. The rows are minterms of where the function is 1,
called ON-set minterms. The goal of the method is to cover all the
rows using a minimum-cost cover of prime implicants.

The reduction step (Step #3) is used to reduce the size of
the table. This step has three sub-steps which are iterated until
no further table reduction is possible! At this point, the reduced
table is either (i) empty or (ii) non-empty. If the reduced table is
empty, the removed essential prime implicants form a minimum-
cost solution. However, if the reduced table is not empty, the table
must be “"solved" (Step #4). The table can be solved using either
“Petrick's method" or the “branching method”. This handout
focuses on Petrick's method. The branching method is discussed in
the books by McCluskey, Roth, etc., but you will not be responsible
for the branching method.

The remainder of this handout illustrates the details of the
Quine-McCluskey method on 3 examples. Example #1 is fairly
straightforward, Examples #2 is more involved, and Example #3
applies the method to a function with ~“don't-cares". But first, we
motivate the need for column dominance and row dominance.
Example #1.:

F(A, B,C,D) = £m(0,2,5,6,7,8, 10, 12, 13, 14, 15)

The Notation. The above notation is a shorthand to describe
the Karnaugh map for F. First, it indicates that F'is a Boolean
function of 4 variables: A, B, C, and D. Second, each ON-set
minterm of F'is listed above, that is, minterms where the function is
1: 0, 2, 5, Each of these numbers corresponds to one entry
(or square) in the Karnaugh map. For example, the decimal number
2corresponds to the minterm ABCD = 0010, (0010 is the binary
representation of 2). Thatis, ABCD = 0010is an ON-set minterm
of F';i.e., itis a 1 entry. All remaining minterms, not listed above,
are assumed to be 0.

89
Step 1: Generate Prime Implicants.

List Minterms
Column |

0 ' 0000
2 0010
8 1000
5 0101
6 0110
10 | 1010
12 | 1100
7 0111
13 | 1101
14 | 1110
15 1111

Combine Pairs of Minterms from Column |

A check () is written next to every minterm which can combined
with another minterm.

Column | Column 1l

0 0000 v (0,2) 00-0

2 0010 v (0,8) -000

8 1000 v (2,6) 0-10
50101 v (2,10) -010
6 0110 v (8,10) 10-0
10 1010 v (8,12) 1-00
12 1100 v/ (5,7) 01-1
70111 v (513) -101
13 1101 v/ (6,7) 011-

90

14 1110 v (6,14) -110

15 1111 v (10,14) 1-10

(12,13) 110-
(12,14) 11-0
(7,15) -111
(13,15) 11-1
(14,15) 111-

Combine Pairs of Products from Column Il

A check () is written next to every product which can combined
with another product.

Column Il contains a number of duplicate entries, e.g.
(0,2,8,10) and (0,8,2,10). Duplicate entries appear because a
product in Column Ill can be formed in several ways. For example,
(0,2,8,10) is formed by combining products (0,2) and (8,10) from
Column II, and (0,8,2,10) (the same product) is formed by
combining products (0,8) and (2,10).

Duplicate entries should be crossed out. The remaining
unchecked products cannot be combined with other products.
These are the prime implicants: (0,2,8,10), (2,6,10,14), (5,7,13,15),
(6,7,14,15), (8,10,12,14) and (12,13,14,15); or, using the usual
product notation: B'N', CD', BD, BC, AD'and AB.

Column | Column 1l Column 11l

0/0000 v (0,2)00-0 V| (0,28,10) -0-0
20010 v (0,8 -000 v | (0,8,2,10) -0-0
81000 v (2,6) 0-10 vV | (2,6,10,14) -10
50101 v | (2,10) -010 v (2,10,6,14) -10
6 0110 v | (8,10) 10-0 Vv | (8,10,12,14) 1-0
10 1010 | v/ | (8,12) 1-00 v & (8,12,10,14) 1-0

91

12 11100

7 0111

13 /1101

14 /11110

15 /1111

v (57
vV (5,13)
v (67
V| (6,14)
v (10,14)
(12,13)
(12,14)
(7,15)
(13,15)

(14,15)

01-1

-101

011-

-110

1-10

110-

11-0

-111

11-1

111-

v (5,7,13,15) -1-1
vV | (513,7,15) -1-1
v (6,7,14,15) -11-
v (6,14,7,15) -11-
v 1 (12,13,14,15) 11-

v (12,14,13,15) | 11-

v

v
v
v

Step 2: Construct Prime Implicant Table.

0 N oo N O

10

12

HIDJ‘

cpD'

BD

BC AD' AB

(0,2,8,10) | (2,6,10,14) (5,7,13,15) (6,7,14,15) (8,10,12,14) (12,13,14,15)

X
X

X
X
X
X
X X

92

13 X X
14 X X X X
15 X X X

Step 3: Reduce Prime Implicant Table.
Iteration #1.
() Remove Primary Essential Prime Implicants

B'D'(x) cD' BD(%) BC AD' AB
(0,2,8,10) | (2,6,10,14) (5,7,13,15) |(6,7,14,15) |(8,10,12,14) (12,13,14,15)
(o) X
0
2 X X
(o) X
5
6 X
7 X
8
10 X X
12 X
13 X X
14 X X X X
15 X X

* indicates an essential prime implicant
oindicates a distinguished row, i.e. a row covered by only 1 prime
implicant

In step #1, primary essential prime implicants are identified.
These are implicants which will appear in any solution. A row which
is covered by only 1 prime implicant is called a distinguished row.
The prime implicant which covers it is an essential prime implicant.
In this step, essential prime implicants are identified and removed.
The corresponding column is crossed out. Also, each row where
the column contains an Xis completely crossed out, since these
minterms are now covered. These essential implicants will be

93

added to the final solution. In this example, B'D'and BDare both
primary essentials.

(i) Row Dominance

The table is simplified by removing rows and columns which
were crossed out in step (i). (Note: you do not need to do this, but it
makes the table easier to read. Instead, you can continue to mark
up the original table.)

cCD’ BC AD' AB
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15)
6 X X
12 X X
14 X X X X

Row 14 dominates both row 6 and row 12. That is, row 14
has an X" in every column where row 6 has an X" (and, in fact,
row 14 has "X"'s in other columns as well). Similarly, row 14 has in
X" in every column where row 12 has an " X". Rows 6 and 12 are
said to be dominated by row 14.

A dominating row can always be eliminated. To see this,
note that every product which covers row 6 also covers row 14.
That is, if some product covers row 6, row 14 is guaranteed to be
covered. Similarly, any product which covers row 12 will also cover
row 14. Therefore, row 14 can be crossed out.

(iii) Column Dominance

cp’ BC AD' AB
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15)
6 X X
12 X X

Column CD'dominates column BC. That is, column
C'D'has an X" in every row where column BChas an “X". In
fact, in this example, column BCalso dominates column CD', so
each is dominated by the other. (Such columns are said to co-
dominate each other.) Similarly, columns AD'and ABdominate
each other, and each is dominated by the other.

A dominated column can always be eliminated. To see this,
note that every row covered by the dominated column is also

94

covered by the dominating column. For example, C’Dcovers every
row which BCcovers. Therefore, the dominating column can
always replace the dominated column, so the dominated column is
crossed out. In this example, CD'and BCdominate each other,
so either column can be crossed out (but not both). Similarly,
AD'and ABdominate each other, so either column can be
crossed out.

Iteration #2.
() Remove Secondary Essential Prime Implicants

C.D"{*t} AD*[##]

(2,6,10,14) | (8,10,12,14)
(0)6 X
(e)12 X

** indicates a secondary essential prime implicant
aindicates a distinguished row

In iteration #2 and beyond, secondary essential prime
implicants are identified. These are implicants which will appear in
any solution, given the choice of column-dominance used in the
previous steps (if 2 columns co-dominated each other in a previous
step, the choice of which was deleted can affect what is an
“essential" at this step). As before, a row which is covered by only
1 prime implicant is called a distinguished row. The prime implicant
which covers it is a (secondary) essential prime implicant.

Secondary essential prime implicants are identified and
removed. The corresponding columns are crossed out. Also, each
row where the column contains an Xis completely crossed out,
since these minterms are now covered. These essential implicants
will be added to the final solution. In this example, both CD'and
AD'are secondary essentials.

Step 4: Solve Prime Implicant Table.

No other rows remain to be covered, so no further steps are
required. Therefore, the minimum-cost solution consists of the
primary and secondary essential prime implicants B'D’', BD,
CD'and AD':

F=PBD"+BD+CD' + AD'

95

Example #2:
F(A,B,C,D) = £¥m(0,2,3,4,5,6,7,8,9,10,11,12,13)

Step 1: Generate Prime Implicants.
Use the method described in Example #1.
Step 2: Construct Prime Implicant Table.

A'D' B'D C'D' A'C B'C | A'B BC' AB' AC'

0 X X X

2 X X X X

3 X X

4 X X X X

5 X X

6 X X X

7 X X

8 X X X X

9 X X
10 X X X
11 X X
12 X X X
13 X X

Step 3: Reduce Prime Implicant Table.
Iteration #1.

(i) Remove Primary Essential Prime Implicants
There are no primary essential prime implicants: each row is
covered by at least two products.

(i) Row Dominance

A'D' B'D' C'D' A'C B'C A'B | BC' AB' AC'
X X X
X X X X

g b w N O
x
x

96

O 0o Nl O

10
11
12
13

X X
X X
X X X X
X X
X X X
X X
X X X
X X

There are many instances of row dominance. Row 2
dominates 3, 4 dominates 5, 6 dominates 7, 8 dominates 9, 10
dominates 11, 12 dominates 13. Dominating rows are removed.

(iii) Column Dominance

A'D'
0 X
3
5
7
9
11
13

B'D' C'D' | A'C | B'C | A'B BC' AR' | AC'
X X
X | X
X X
X X
X | X
X X
X X

Columns A’'D', B'D'and C'D'each dominate one another. We
can remove any two of them.

Iteration #2.

() Remove Secondary Essential Prime Implicants

(e)0
3

5
7
9

!
A'D'(++) 410 B'C | A'B | BC' AB' AC
X

97

11 X X
13 X X

** indicates a secondary essential prime implicant
sindicates a distinguished row

Product A’'D'is a secondary essential prime implicant; it is
removed from the table.

(i) Row Dominance
No further row dominance is possible.

(ili) Row Dominance
No further column dominance is possible.

A'C |B'C | A'B BC' | AB' | ACY
3. X | X
5 X | X
7 X X
9 X | X
11 X X
13 X X

There are no additional secondary essential prime
implicants, and no further row- or column-dominance is possible.

There are two solutions. Both solutions have a minimal
number of prime implicants, so either can be used. With either
choice, we must include the secondary essential prime
implicant, A'ID’, identified earlier. Therefore, the two minimum-cost
solutions are:

F=AD 4+ AC+BC 4+ AB'
F=AD +BC+AB+ AC'

Example #3: Don't-Cares
F(A,B,C,D) =¥m(2,3,7,9,11,13) + £d(1, 10, 15)

Step 1: Generate Prime Implicants.
The don't-cares are included when generating prime
implicants.

98

Note: As indicated earlier, you should learn this basic method for
generating prime implicants (Step #1).

List Minterms

Column |
1 0001
2 0010
3 0011
9 1001
10 1010
7 0111
11 1011
13 1101
15 1111

Combine Pairs of Minterms from Column |

A check () is written next to every minterm which can combined
with another minterm.

Column | Column 1

1 0001 v (1,3) 00-1

20010 v (1,9) -001
30011 v (2,3) 001-
9 1001 v (2,10) -010
10 1010 v (3,7) 0-11
7 0111 v (3,11) -011
11 1011 v/ (9,11) 10-1
13 1101 v (9,13) 1-01

99

15 1111 v/ (10,11) 101-

(7,15) -111
(12,15) 1-11
(13,15) 11-1
Combine Pairs of Products from Column I

A check () is written next to every product which can combined
with another product.

Column | Column 1l Column 1l
1 0001 | v/ (1,3) 00-1 v (1,3,9,11) |-0-1
2 0010 v (1,9 -001 v | (2,3,10,11) |-01-
3 0011 |V (2,3) 001- v | | (3,7,11,15) -11
9 1001 v | | (2,10) -010 v | [(9,11,13,15) | 1-1
10 1010 v/ (3,7) 0-11 v
7 0111 v | | (311) -011 v
11 1011 v | (9,11) 10-1 v
13 1101 | v | | (9,13) 1-01 V/
15 1111 | v (10,11) 101- v/

(7,15) |-111 v/

(11,15) 1-11 v/

(13,15) 11-1 v

The unchecked products cannot be combined with other
products. These are the prime implicants: (1,3,9,11), (2,3,10,11),
(3,7,11,15) and (9,11,13,15); or, using the usual product notation:
B'D, B'C, CDand AD.

100

Step 2: Construct Prime Implicant Table.
The don't-cares are omitted when constructing the prime implicant
table, since they do not need to be covered.

B'D B'C CD AD
(1,3,9,11) (2,3,10,11) (3,7,11,15) (9,11,13,15)
2 X
3 X X X
7 X
9 X X
11 X X X X
13 X

Step 3: Reduce Prime Implicant Table.
(i) Remove Essential Prime Implicants

B'D B'C(#) CD(x) AD(x)
(1,3,9,11) (2,3,10,11) (3,7,11,15) (9,11,13,15)

2 X

3 X X X
(e)7 X

9 X X

11 X X X X
(0)13 X

* indicates an essential prime implicant
oindicates a distinguished row

Step 4: Solve Prime Implicant Table.

The essential prime implicants cover all the rows, so no
further steps are required. Therefore, the minimum-cost solution
consists of the essential prime implicants B'C', CDand AD:

F=BC+CD+ AD

101

4.6 QUESTIONS :

1. Minimise the following expression using Quine Mc Cluskey
method:

a. f(AB,C,D,E)=> m(891011131516182124,2526,2730,31)

b. f(AB,C,D,E)=> m(1,3456812]14,15)

2. Simplify the following using K-map and realize it using 2-input
gates:

a.

b.
c.

f(AB,C,D) = > m(1,29101114,5)

f(AB,C,D)=> m0159131415)+d(34,71011)
F(A,B,C,D)=TIIM(468910121314)+d(0.25)

FURTHER READING:

3

%

R/
°

5

S

5

S

Digital Electronics - An Introduction to Theory and Practice
by W H Gothmann

Computer Architecture and Parallel Processing by Kai
Hwang, Faye A Briggs , McGraw Hill

Computer Architecture and Organization by William
Stallings

Fundamentals of Computer organization and Design by
Sivarama P. Dandamudi

http://en.wikipedia.org/wiki/Canonical form
http://en.wikipedia.org/wiki/Minterm
http://en.wikipedia.org/wiki/Quine—McCluskey algorithm
http://en.wikipedia.org/wiki/Karnaugh map

102

COMBINATIONAL LOGIC DESIGN

Unit Structure

5.0 Objectives
5.1 Combinational Circuits
5.2 Adders and Subtractors

5.21 Half Adder
5.2.2 Full Adder

5.2.3: Half Subtractor
5.2.4 Full Subtractor

5.3 Code Converters

5.3.1 Bcd to Excess — 3 (Xs — 3) Code Conversion
5.3.2 Binary to Gray Code Conversion
5.3.3 Gray to Binary Code Conversion

5.4 Questions
5.6 Further Reading

5.0

OBJECTIVES

After completing this chapter, you will be able to:

.0

S

L0

Understand the basics of Combinational Circuits.

Understand the structure and working of Adders &
Subtractor with the help of suitable diagrams.

Use the Adders & Subtractor in real life applications.

Understand the functioning and working of different types of
Code Converters with the help of appropriate digram.

Using the code converters in applications.

COMBINATIONAL CIRCUITS

Logic circuits for digital systems may be combinational or

sequential. A combinational circuit consists of logic gates whose
outputs at any time are determined by combining the values of the
applied inputs using logic operations. A combinational circuit
performs an operation that can be specified logically by a set of
Boolean expression. In addition to using logic gates, sequential
circuits employ elements that store bit values. Sequential circuit
outputs are a function of inputs and the bit value in storage

103

elements. These values, in turn, are a function of previously applied
inputs and stored values. As a consequence, the outputs of a
sequential circuit depend not only on the presently applied values
of the inputs, but also on pas inputs, and the behavior of the circuit
must be specified by a sequence in time of inputs and internal
stored bit values.

A combinational circuit consists of input variables, output
variables, logic gates and interconnections. The interconnected
logic gates accept signals from the inputs and generate signals at
the output. The n input variables come from the environment of the
circuit, and the m output variables are available for use by the
environment. Each input and output variable exists physically as a
binary signal that represents logic 1 or logic 0.

For n input variables, there are 2" possible binary input
combinations. For each binary combination of the input variables,
there is one possible binary value on each output. Thus, a
combinational circuit can be specified by a truth table that lists the
output values for each combination of the input variables. A
combinational circuit can also be described by m Boolean function,
one for each output variable. Each such function is expressed as
function of the n input variables.

Inputs Combinational circuit Outputs
Mm—— . —
M input ——rm CEI‘I‘HIJIIH!UWE[= 1 output
varigbles | Logic i variables
i Circuit -

Combinational Circuit Design

The design of combinational circuit starts from a
specification of the problem and culminates in a logic diagram or
set of Boolean equations from which the logic diagram can be
obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required
number of inputs and outputs, and assign a letter symbol to
each.

2. Derive the truth table that defines the required relationship
between inputs and outputs.

104

3. Obtain the simplified Boolean functions of each outputs as
function of the input variables.

Draw the logic diagram.

Verify the correctness of the design.

ok

5.2 ADDERS AND SUBTRACTORS

Digital computers perform a variety of information-
processing tasks. Among the basic functions encountered are the
various arithmetic operations. The most basic arithmetic operation,
no doubt, is the addition of two binary digits. This simple addition
consists of four possible elementary operations, namely, 0 + 0 = 0,
0O0+1=1,1+0=1and1+ 1= 10. The first three operations
produce a sum whose length is one digit, but when both bits are
equal to 1, the binary sum consists of two digits. The higher
significant bit of this result is called a carry. When the bits contain
more significant digits, the carry obtained from the addition of two
bits is added to the next higher-order pair of significant bits. A
combinational circuit that performs the addition of two bits is called
a half-adder. One that performs the addition of three bits (two
significant bits and a previous carry) is a full-adder. The name of
the former stems from the fact that two half-adders can be
employed to implement a full-adder.

5.2.1 Half Adder

A half-adder is an arithmetic circuit block that can be used to
add two bits. Such a circuit thus has two inputs that represent the
two bits to be added and two outputs, with one producing the SUM
output and the other producing the CARRY. The figure shows the
truth table of a half-adder, showing all possible input combinations
and the corresponding outputs.

The Boolean expressions for the SUM and CARRY outputs
are given by the equations
SUM = AF + AB

CARRY = 4B

A B s C
0 0 0 0

A= Half S
0 1 1 0 A

B dder o
1 0 1 0
1 1 0 1

An examination of the two expressions tells that there is no
scope for further simplification. While the first one representing the
SUM output is that of an EX-OR gate, the second one representing

105

the CARRY output is that of an AND gate. However, these two
expressions can certainly be represented in different forms using
various laws and theorems of Boolean algebra to illustrate the
flexibility that the designer has in hardware-implementing as simple
a combinational function as that of a half-adder. The simplest way
to hardware-implement a half-adder would be to use a two-input
EX-OR gate for the SUM output and a two-input AND gate for the
CARRY output, as shown in figure, it could also be implemented by
using an appropriate arrangement of either NAND or NOR gates.
The figure shows the implementation of a half-adder with NAND

gates only.
D— S=AB+AB

A

1)
0

5.2.2 Full Adder

A full adder circuit is an arithmetic circuit block that can be
used to add three bits to produce a SUM and a CARRY output.
Such a building block becomes a necessity when it comes to
adding binary numbers with a large number of bits. The full adder
circuit overcomes the limitation of the half-adder, which can be
used to add two bits only. Let us recall the procedure for adding
larger binary numbers. We begin with the addition of LSBs of the
two numbers. We record the sum under the LSB column and take
the carry, if any, forward to the next higher column bits. As a result,
when we add the next adjacent higher column bits, we would be
required to add three bits if there were a carry from the previous
addition. We have a similar situation for the other higher column
bits also until we reach the MSB. A full adder is therefore essential
for the hardware implementation of an adder circuit capable of
adding larger binary numbers. A half-adder can be used for addition
of LSBs only.

Figure shows the truth table of a full adder circuit showing all
possible input combinations and corresponding outputs. In order to
arrive at the logic circuit for hardware implementation of a full
adder, we will firstly write the Boolean expressions for the two
output variables, that is, the SUM and CARRY outputs, in terms of
input variables. These expressions are then simplified by using any
of the simplification techniques described in the previous chapter.
The Boolean expressions for the two output variables are given in
Equations below for (S) and CARRY output(Cout)

S = ABCin + ABC,, + ABC,, + ABC,,
Cout = ABC,, +AEC,, +ABC,, + ABC,,

106

The next step is to simplify the two expressions. We will do
so with the help of the Karnaugh mapping technique. Karnaugh
maps for the two expressions are given in Figure.

A B Cin SUMI(S) GCout
0 0 0 0 0
—] S 0 0 1 1 0
B Full 0 1 0 1 0
Adder 0 1 1 0 1
Cn— c 1 0 0 1 0
out 1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
Cin —
AB Cin Cin
AB 1
AB 1
AB 1
AB 1
(@)
Cin J—
AB Cin Cin
AB

AB —1|
AB |1 ﬂ[
]

(b)

As is clear from the two maps, the expression for the SUM
(S_output cannot be simplified any further, whereas the simplified
Boolean expression for Cout is given by the equation

C,.=B.C,+AB+A.C,
C,y =A.B+C,.(A.B+AB)

107

Cout
ﬁ—
=D
Cin
K—
B) —) >
Cin
A—
FD
Cll'l
A—
D
Cin
A _\
B— 1/
E—_“N
) Cout
Cin
D
Cin

5.2.3 Half Subtractor

The half-subtractor is a combinational circuit which is used to
perform subtraction of two bits. It has two inputs, X (minuend) and
Y (subtrahend) and two outputs D (difference) and B (borrow).

8 T >——esu DIFFERENC
L= -

I - cormmon
HIEE

108

0Jojojo]
ofa]a 1]
o]l]o]
1J2]ollo]

5.2.4 Full Subtractor

The full-subtractor is a combinational circuit which is used to
perform subtraction of three bits. It has three inputs, X (minuend)
and Y (subtrahend) and Z (subtrahend) and two outputs D
(difference) and B (borrow).
Easy way to write truth table
D=A-B-BOR|y (don't bother about sign)
BORout=11If A<(B+ BOR|N)

R L
[%— >Wb:::%g::ﬁ%m

AlBBORW|D[BORouT
oo o Jof o |
oo 1 i 1 |
o o i 1 |
oz 1 Jof 1 |
4ol o J1] o |
4o 1 Jof o |
42 o Jof o |
a1 Jof 1]
So, Logic equations are:

D=X®&Y®Z __
B=7Z-(XaY)+X-Y

Where X=A, Y =B, Z = BOR\y B=BORour

5.3 CODE CONVERTERS

The availability of a large Variety of codes for the same
discrete elements of information results in the use of different codes

109

by different digital systems. It is sometimes necessary to use the
output of one system as the input to another. A conversion circuit
must be inserted between the two systems if each uses different
codes for the same information. Thus, a code converter is a circuit
that makes the two systems compatible even though each uses a
different binary code. To convert from binary code A to binary code
B, the input lines must supply the bit combination of elements as
specified by code A and the output lines must generate the
corresponding bit combination of code B. A combinational circuit
performs this transformation by means of logic gates.

5.3.1 BCD to EXCESS - 3 (XS — 3) Code Conversion
Input (Std BCD code) Output (XS3 Code)

A B C

N

y

rlo|lr|r|lo|lr|lo|lr|lo]lr]|lo]lr]|lo]lr]|lolo

X
0
1
1
1
1
0
0
0
0
1
X
X
X
X
X

RrlrRr]lr]lrRr]lr]rRr]lr|lo]lo]lolo|lo]lo]lo]|o
RrlrRr]r|l]lo]lo|lo]lolr]lr]lr]lRr|lololo]|o
Rrlrr|]lo|lr]lr|lo]lolr]lr|lolo]lr]|lr]|lo]lo
X|¥X|IxX|x|x|r]|r]|r]|lr|r|lo|lolo|lo]|o]s
XIXIXIX|*Xx|]olr|]o]lr|]lo|lr|lo|lr|]oOo]r

1
0
0
1
1
0
0
1
1
0
X
X
X
X
X

110

D ’; cbh C
apm 00 01 11 10 A 00 01 11 10
00 1 1 (0, 0] 1 1
01 1 1 01 1 1
B
11| x x x X 11| | x x x X
A A
10 1 X X 10 1 X P-4
D D
z = D' y=0C6D + C' D’
D < cbh C
AR 00 01 11 10 AR 00 o1 11 10
00 ‘ 1 1 1 [8.8)
01 1 01 1 1 1
B
11| 1 x x x x 11|l x x x x
A A -
10 ‘ 1 x X 10 1 1 X X
D D
X =B'C+ B'D + BC'D' w=.A4 + BC + BD
z=D’

y=CD+C’'D’ = CD+(C + D)’
x=B'C + B'D + BC'D’ = B'(C+D) + BC'D’
w=A +BC+BD=A + B (C+D)

> g

D) cp ™)
;D——Do—«(C +D)’
C+D
B

111

5.3.2 Binary to Gray code Conversion

Gray

GO

Gl

G2

G3

Binary

Ch CD CD CD

CD Cb CD D

G2= ADB

G3=A

112

CD CD CD ¢D

AB
AB
AB
co=C@®D
CD CD CD CD
ABl 0 (1) o (1)
AB| -0 | 1] o |1
ABl 0 1] 01
AB| 1) o ey
G1= B®C
Binary Input
A B C
.L/ \L/
Y; Y Y1

Gray Code Output

113

5.3.3 Gray to binary code Conversion
A given Gray code number can be converted into its binary
equivalent by going through the following steps:

1. Begin with the most significant bit (MSB). The MSB of the binary
number is the same as the MSB of the Gray code number.

2. The bit next to the MSB (the second MSB) in the binary number
is obtained by adding the MSB in the binary number to the second
MSB in the Gray code number and disregarding the carry, if any.

3. The third MSB in the binary number is obtained by adding the
second MSB in the binary number to the third MSB in the Gray
code number. Again, carry, if any, is to be ignored.

4. The process continues until we obtain the LSB of the binary
number.

The conversion process is further illustrated with the help of
an example showing step-by-step conversion of the Gray code
number 1110 into its binary equivalent:

Gray code 1110

Binary 1- - -

Gray code 1110

Binary 10 - -

Gray code 1110

Binary 101

Gray code 1110

Binary 1011

Gray Binary

A B C D G3 G2 G1 GO
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 0
0 1 1 1 0 1 0 1
1 0 0 0 1 1 1 1
1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0

114

(Getting the expressions using K-maps and drawing the Logic
diagram using gates is left as an exercise for students)

The Digital Comparator

Another common and very useful combinational logic circuit
is that of the Digital Comparator circuit. Digital or Binary
Comparators are made up from standard AND, NOR and NOT
gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of
those inputs. For example, along with being able to add and
subtract binary numbers we need to be able to compare them and
determine whether the value of input A is greater than, smaller than
or equal to the value at inputB etc. The digital comparator
accomplishes this using several logic gates that operate on the
principles of Boolean algebra. There are two main types of digital
comparator available and these are.

e Identity Comparator - is a digital comparator that has only one
output terminal for when A = B either "HIGH" A = B = lor
"LOW" A=B=0

e Magnitude Comparator - is a type of digital comparator that has
three output terminals, one each for equality, A = B greater
than, A>B andlessthan A<B

The purpose of a Digital Comparator is to compare a set of
variables or unknown numbers, for exampleA (Al, A2, A3, An,
etc) against that of a constant or unknown value such as B (B1, B2,
B3, Bn, etc) and produce an output condition or flag depending
upon the result of the comparison. For example, a magnitude
comparator of two 1-bits, (A and B) inputs would produce the
following three output conditions when compared to each other.

A~ T A — T A~ 1D
ASD, AT D, AS~D

Which means: A is greater than B, As equal to B, and A is less
than B

This is useful if we want to compare two variables and want
to produce an output when any of the above three conditions are
achieved. For example, produce an output from a counter when a
certain count number is reached. Consider the simple 1-bit
comparator below.

115

1-bit Comparator

|
N ™~
A—1 SO A = 3
| } C=AB A<R
~ e 7
I _/ —
| L W
1 M ~_ Armam et oAy
I po— U = ABTAB = A=D
— 1 —F
[e hY _ &
| } E=AR =N A~D
s—1 1 D N N— J L
e | il |

Then the operation of a 1-bit digital comparator is given in
the following Truth Table.

Truth Table
Inputs Outputs
B A A>B A=B A<B
0 0 0 1 0
0 1 1 0 0
1 0 0 0 1
1 1 0 1 0

You may notice two distinct features about the comparator from the
above truth table. Firstly, the circuit does not distinguish between
either two "0" or two "1"™'s as an output A = B is produced when they
are both equal, either A = B = "0"or A = B = "1". Secondly, the
output condition for A = B resembles that of a commonly available
logic gate, the Exclusive-NOR or Ex-NOR function (equivalence) on each
of then-bitsgiving: Q=A B

Digital comparators actually use Exclusive-NOR gates within
their design for comparing their respective pairs of bits. When we
are comparing two binary or BCD values or variables against each
other, we are comparing the "magnitude” of these values, a logic
"0" against a logic "1" which is where the term Magnitude
Comparator comes from.

Example:
In a car, we have the following components:

A Day-night sensor: Day-1, Night-0
B Lamps on: On-1, Off-0

C Ignition on: On-1, Off-0

D Warning light for lamps-on

116

In this case, the truth table for the logic D would be

R R R R OlO|lOo O|>
Rl PP O|lO kR R O O
R Ol rRr|O R Ol O O
R R, O|lOO O kL | O O

Therefore,
D=ABC + ABC + ABC + ABC + ABC + ABC = ABC + ABC + ABC + ABC

which can be written as in the sum of product form.
5 1,2,6,7

We arrive at this by looking at the combinations when the
output is one.

We can alternatively, express this in the product of sums
form by looking at the combinatins when the outout is low
as

D=(A+B4C).(A+B+C).(A+B+C).(A+ B+ C)=110,4,5,6

Using SOP and POS, it can be implemented as follows:

A

W/

|
D—|
—]
~_
L/
5
1

1L
il

N |

L7

117

Next, we will try to reduce the number of gates by
combining terms suitably.

D = ABC + ABC + ABC + ABC
= ABC + ABC + AB
= B(A + AC) 4+ ABC
= B(A+C)+ AB

= AB 4+ BC + ABC

AB
C 00 01 11 10
-\--\'-.“ T . - I
e T s . . -’___\g:
: H ¥ Y i r 3
0 0. 1 S o
1= et & sl R .
! T |
1 \ 1 C ;
5 ! L 3
1 0 2 L0,
-

We can get the above by clubbing the 1’s in the k-map
shown.

Now, if we club the zeroes together in the k-map,

D= (B+C)A+B)A4+B4+0C)

Check that we get the same expression by simplifying the
product of sums expression (by using (X+Y)(X+2)=X+YZ)

5.4 QUESTIONS:

1. Design a 4-bit gray to 4-bit binary code converter.
2. Design a 4-bit binary to 4-bit gray code converter.

3. A step in space vehicle checkout depends on FOUR sensors S;,
Sy, Sz and Sy. Every circuit is working properly if sensor S; and
at least two of the other three sensors are at logic 1. Assuming
that the output is 1 when the circuit is working properly,

118

implement the system using NAND gates only after finding
minimal SOP expression for the output.

4. Design a two-bit by two-bit multiplier circuit. Implement using
minimum hardware.

5. Design a two bit comparator circuit.

5.5 FURTHER READING:

+« Digital Electronics - An Introduction to Theory and Practice
by W H Gothmann

«» Computer Architecture and Parallel Processing by Kai
Hwang, Faye A Briggs , McGraw Hill

« Computer Architecture and Organization by William
Stallings

** Fundamentals of Computer organization and Design by
Sivarama P. Dandamudi

< http://en.wikipedia.org/wiki/Combinational logic

< http://en.wikipedia.org/wiki/Adder (electronics)

< http://en.wikipedia.org/wiki/Subtractor

119

6

MULTIPLEXERS AND DEMULTIPLEXERS

Unit Structure

6.0 Objectives

6.1 Multiplexers
6.1.1 4-to-1 Channel Multiplexer
6.1.2 4 Channel Multiplexer using Logic Gates
6.1.3 4-to-2 Channel Multiplexer
6.1.4 The Demultiplexer
6.1.5 1-to-4 Channel De-multiplexer
6.1.6 4 Channel Demultiplexer using Logic Gates
6.1.7 The Digital Encoder
6.1.8 4-to-2 Bit Binary Encoder
6.1.9 Priority Encoder
6.1.10 8-to-3 Bit Priority Encoder
6.1.11 Encoder Applications
6.1.12 A 4-t0-16 Binary Decoder Configuration

6.2 Questions

6.3 Further Reading

6.0 OBJECTIVES:

After completing this chapter, you will be able to:

Learning the basics about Multiplexer Electronic Circuit.
Understand the Structure & working of different types of
Multiplexers with help of suitable diagrams.

Learning the basics about Demultiplexer Electronic Circuit.
Understand the basics of Digital Encoders.

Aware about applications of Encoders.

7
X4
7
X4

R/ R/
X GIR X g

R/
°

6.1 MULTIPLEXERS

A data selector, more commonly called a Multiplexer,
shortened to "Mux" or "MPX", are combinational logic switching
devices that operate like a very fast acting multiple position rotary
switch. They connect or control, multiple input lines called

120

"channels" consisting of either 2, 4, 8 or 16 individual inputs, one at
a time to an output. Then the job of a multiplexer is to allow multiple
signals to share a single common output. For example, a single 8-
channel multiplexer would connect one of its eight inputs to the
single data output. Multiplexers are used as one method of
reducing the number of logic gates required in a circuit or when a
single data line is required to carry two or more different digital
signals.

Digital Multiplexers are constructed from individual
analogue switches encased in a single IC package as opposed to
the "mechanical" type selectors such as normal conventional
switches and relays. Generally, multiplexers have an even number
of data inputs, usually an even power of two, n>, a number of
“control" inputs that correspond with the number of data inputs and
according to the binary condition of these control inputs, the
appropriate data input is connected directly to the output. An
example of a Multiplexer configuration is shown below.

6.1.1:4-to-1 Channel Multiplexer

| Common

— Cutput
Analogue B [—
Inputs |
P

Addressing Input
B a Selected
0 0 A
0 1 B
1 0 C
1 1 D

The Boolean expression for this 4-to-1 Multiplexer above
with inputs A to D and data select lines a, b is given as:

Q = abA + abB + abC + abD

In this example at any one instant in time only ONE of the
four analogue switches is closed, connecting only one of the input
lines A to D to the single output at Q. As to which switch is closed
depends upon the addressing input code on lines "a" and "b", so for
this example to select input B to the output at Q, the binary input

121

address would need to be "a" = logic "1" and "b" = logic "0". Adding
more control address lines will allow the multiplexer to control more
inputs but each control line configuration will connect only ONE
input to the output.

Then the implementation of this Boolean expression above
using individual logic gates would require the use of seven
individual gates consisting of AND, OR and NOT gates as shown.

6.1.2: 4 Channel Multiplexer using Logic Gates

‘I:rga-rters
>
b _E_ “AND" gate

e

BEe

“0OR" gate

Ce

De _.>_

The symbol used in logic diagrams to identify a multiplexer is as
follows.

Multiplexer Symbol

A —0
B ——1
Inputs 21 Q
& 2 Output
D —3
ab
Select

Multiplexers are not limited to just switching a number of
different input lines or channels to one common single output.
There are also types that can switch their inputs to multiple outputs
and have arrangements or 4 to 2, 8 to 3 or even 16 to 4 etc
configurations and an example of a simple Dual channel 4 input
multiplexer (4 to 2) is given below:

6.1.3 :4-to-2 Channel Multiplexer

S1a —/G
52, _,,/,//g—‘_.. Qe

S15 — o™ o Outputs
|
S2g —‘—1—1'0/’.“—‘_" Qg

| I I
= .

Input a —

select p —| o

Here in this example the 4 input channels are switched to 2
individual output lines but larger arrangements are also possible.
This simple 4 to 2 configuration could be used for example, to
switch audio signals for stereo pre-amplifiers or mixers.

6.1.4 :The Demultiplexer

The data distributor, known more commonly as
a Demultiplexer or "Demux"”, is the exact opposite of
theMultiplexer we saw in the previous tutorial. The demultiplexer
takes one single input data line and then switches it to any one of a
number of individual output lines one at a time.
The demultiplexerconverts a serial data signal at the input to a
parallel data at its output lines as shown below.

6.1.5:1-to-4 Channel De-multiplexer

123
—cr"lf/o—- A
Common ”_V#T/' B Data
it T 1 4o, Oupus
I
—O"rlo—lr D
I

Quiput a
Selected b

Ddressing Input
b 4 Selected
0 0 A
0 1 B
1 0 C
1 1 D

The Boolean expression for this 1-to-4 Demultiplexer above
with outputs A to D and data select lines a, b is given as:

F=ab A+ abB+ abC + abD

The function of the Demultiplexer is to switch one common
data input line to any one of the 4 output data lines A to D in our
example above. As with the multiplexer the individual solid state
switches are selected by the binary input address code on the
output select pins "a" and "b" and by adding more address line
inputs it is possible to switch more outputs giving a 1-to-2" data line
outputs. Some standard demultiplexer IC’s also have an "enable
output” input pin which disables or prevents the input from being
passed to the selected output. Also some have latches built into
their outputs to maintain the output logic level after the address
inputs have been changed. However, in standard decoder type
circuits the address input will determine which single data output
will have the same value as the data input with all other data
outputs having the value of logic "0".

The implementation of the Boolean expression above using

individual logic gates would require the use of six individual gates
consisting of AND and NOT gates as shown.

6.1.6:4 Channel Demultiplexer using Logic Gates

124

Inverdare
nyeners

. &
a —ed So—n
| L
[™~ “ANMD" qate
b — > AND gate
L e
E a
!)1 ~
[| ! =
I L
—,
Y =
} OB
g
[
b ~
| 7 b
I
p—
™y -
—a0 O
__,;

The symbol used in logic diagrams to identify a demultiplexer is as
follows.

Demultiplexer Symbol

Qutputs

ab
Select

Standard Demultiplexer IC packages available are the TTL
74L.S138 1 to 8-output demultiplexer, the TTL 74LS139 Dual 1-to-4
output demultiplexer or the CMOS CD4514 1-to-16 output
demultiplexer. Another type of demultiplexer is the 24-pin, 74LS154
which is a 4-bit to 16-line demultiplexer/decoder. Here the individual
output positions are selected using a 4-bit binary coded input. Like
multiplexers, demultiplexers can also be cascaded together to form
higher order demultiplexers.

Unlike multiplexers which convert data from a single data
line to multiple lines and demultiplexers which convert multiple lines
to a single data line, there are devices available which convert data
to and from multiple lines and in the next tutorial about
combinational logic devices, we will look at Encoders which
convert multiple input lines into multiple output lines, converting the
data from one form to another.

125

6.1.7 :The Digital Encoder

Unlike a multiplexer that selects one individual data input line
and then sends that data to a single output line or switch, a Digital
Encoder more commonly called a Binary Encoder takes ALL its
data inputs one at a time and then converts them into a single
encoded output. So we can say that a binary encoder, is a multi-
input combinational logic circuit that converts the logic level "1" data
at its inputs into an equivalent binary code at its output. Generally,
digital encoders produce outputs of 2-bit, 3-bit or 4-bit codes
depending upon the number of data input lines. An "n-bit" binary
encoder has 2" input lines andn-bit output lines with common types
that include 4-to-2, 8-t0-3 and 16-to-4 line configurations. The
output lines of a digital encoder generate the binary equivalent of
the input line whose value is equal to "1" and are available to
encode either a decimal or hexadecimal input pattern to typically a
binary or B.C.D. output code.

6.1.8: 4-to-2 Bit Binary Encoder

Inputs Qutputs

B — | . o DD DD 0O Q

0O 0 0 1 0 0

pata 0" —™ 4x2 ™ 001 0|0 1
Inputs D, —p Encoder 0 1 0 O 1 0
1 0 0 0|1 1

D; — 0 0 0 0| x x

One of the main disadvantages of standard digital encoders
is that they can generate the wrong output code when there is more
than one input present at logic level "1". For example, if we make
inputs D; andD;, HIGH at logic "1" at the same time, the resulting
output is neither at "01" or at "10" but will be at "11" which is an
output binary number that is different to the actual input present.
Also, an output code of all logic "0"s can be generated when all of
its inputs are at "0" OR when input Dy is equal to one.

One simple way to overcome this problem is to "Prioritise”
the level of each input pin and if there was more than one input at
logic level "1" the actual output code would only correspond to the
input with the highest designated priority. Then this type of digital
encoder is known commonly as aPriority Encoderor P-
encoder for short.

6.1.9: Priority Encoder

The Priority Encoder solves the problems mentioned above
by allocating a priority level to each input. The priority

126

encoders output corresponds to the currently active input which has
the highest priority. So when an input with a higher priority is
present, all other inputs with a lower priority will be ignored. The
priority encoder comes in many different forms with an example of
an 8-input priority encoder along with its truth table shown below.

6.1.10 :8-to-3 Bit Priority Encoder

Lowest Priority Inputs Outputs
Dy — Dy Dg Ds Dy D3 D2 Dy Dg | G2 Oy Qp
Dy — > Qo 0 000O0OD0O0T1|OOO
Dz—l-as—l-m 000 O0OTOT“1T x |00 1
x
D3 —= 000001 x x [0 10
Dd_._Eﬁhin—th 00001 x x x|0 11
Dy —» 0001 x x = x |10 0
Dg —p= 001 x x x = x |10 1
Dy —= 01 x x x x x x |1 140
Highest Priority 1 x x 2 x x x x| 1 11
X = dor cars

Priority encoders are available in standard IC form and the
TTL 74LS148 is an 8-to-3 bit priority encoder which has eight active
LOW (logic "0") inputs and provides a 3-bit code of the highest
ranked input at its output. Priority encoders output the highest order
input first for example, if input lines "D2", "D3" and "D5" are applied
simultaneously the output code would be for input "D5" ("101") as
this has the highest order out of the 3 inputs. Once input "D5" had
been removed the next highest output code would be for input "D3"
("011"), and so on.

The truth table for a 8-to-3 bit priority encoder is given as:

Digital Inputs Binary Output
Dz Ds Ds Ds Dz D D1 Do Q2 Qi1 Qo

0 0 0 0 0 0 0 1 O 0 O

0 0 0 0 0 0 1 X O 0 1

0 0 0 0 0 1 X X O 1 o0

0 0 0 0 1 X X X o 1 1

0 0 0 1 X X X X 1 0 O

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1

From this truth table, the Boolean expression for the encoder
above with inputs Dy to D7 and outputs Qo, Q1, Q2 is given as:

Output Qo

127

e T ——

-
o

[
(
Qi = Z(Esthz +DsD4D3 +Ds +D?)
Qi = Z(

[_)554[[)2 +D3)+DE +D?)

Output Q>
Q: = £(4,56,7)

Q2 = 2(5?555504 + D;DsDs + D7Ds +D?)
Q: = (D« +Ds+Ds + D7)

Then the final Boolean expression for the priority encoder including
the zero inputs is defined as:

Qo = 2[55(5452& +D4Ds +Ds)+D3)
Q1 = 2(5554([)2 +D3]+D5 +D?)
Qz = Z(Ds+Ds+Ds+D7)

In practice these zero inputs would be ignored allowing the
implementation of the final Boolean expression for the outputs of
the 8-to-3 priority encoder above to be constructed using
individual ORgates as follows.

Digital Encoder using Logic Gates

128

Selected Output
o —‘uﬁn,ﬂ:}amﬁn?
D2 1
Inputs [D}j— —’01=DE+D3+DE+D?
Ds
o)—Q2=D4+D5+D5+D;

6.1.11 :Encoder Applications

Keyboard Encoder

Priority encoders can be used to reduce the number of wires
needed in a particular circuits or application that have multiple
inputs. For example, assume that a microcomputer needs to read
the 104 keys of a standard QWERTY keyboard where only one key
would be pressed either "HIGH" or "LOW" at any one time. One
way would be to connect all 104 wires from the keys directly to the
computer but this would be impractical for a small home PC, but
another better way would be to use a priority encoder. The 104
individual buttons or keys could be encoded into a standard ASCII
code of only 7-bits (0 to 127 decimal) to represent each key or
character of the keyboard and then inputted as a much smaller 7-bit
B.C.D code directly to the computer. Keypad encoders such as the
74C923 20-key encoder are available to do just that.

Positional Encoders

Another more common application is in magnetic positional
control as used on ships or robots etc. Here the angular or rotary
position of a compass is converted into a digital code by an
encoder and inputted to the systems computer to provide
navigational data and an example of a simple 8 position to 3-bit
output compass encoder is shown below. Magnets and reed
switches could be used to indicate the compasses angular position.

)
MNorth
— NW NE —|_F—"' | O q,
1 Angular
West _,—P — QO positional
s East ——— m| Bx3 0 Code
— | Encoder > Q
—
SW SE .
South — -

129

)) Binary Output
Compass Direction

Qo Q1 Q2
North 0 0 0
North-East 0 0 1
East 0 1 0
South-East 0 1 1
South 1 0 0
South-West 1 0 1
West 1 1 0
North-West 1 1 1

Interrupt Requests

Other applications especially for Priority Encoders may
include detecting interrupts in microprocessor applications. Here
the microprocessor uses interrupts to allow peripheral devices such
as the disk drive, scanner, mouse, or printer etc, to communicate
with it, but the microprocessor can only "talk" to one peripheral
device at a time. The processor uses "Interrupt Requests" or "IRQ"
signals to assign priority to the devices to ensure that the most
important peripheral device is serviced first. The order of
importance of the devices will depend upon their connection to the
priority encoder.

IRQ Number Typical Use Description

IRQO System timer Internal System Timer.

IRQ1 Keyboard Keyboard Controller.

IRQ 3 COM2 & COM4 Second and Fourth Serial Port.
IRQ 4 COM1 & COM3 First and Third Serial Port.

IRQ 5 Sound Sound Card.

IRQ 6 Floppy disk Floppy Disk Controller.

IRQ 7 Parallel port Parallel Printer.

130

IRQ 12 Mouse PS/2 Mouse.

IRQ 14 Primary IDE Primary Hard Disk Controller.
Secondary Hard Disk

IRQ 15 Secondary IDE Controller.

Because implementing such a system using priority
encoders such as the standard 74LS148 priority encoder IC
involves additional logic circuits, purpose built integrated circuits
such as the 8259 Programmable Priority Interrupt Controller is
available.

Digital Encoder Summary

Then to summarise, the Digital Encoder is a combinational
circuit that generates a specific code at its outputs such as binary
or BCD in response to one or more active inputs. There are two
main types of digital encoder. The Binary Encoder and
the Priority Encoder.

The Binary Encoder converts one of 2"inputs into an n-
bit output. Then a binary encoder has fewer output bits than the
input code. Binary encoders are useful for compressing data and
can be constructed from simple AND or OR gates. One of the main
disadvantages of a standard binary encoder is that it would produce
an error at its outputs if more than one input were active at the
same time. To overcome this problem priority encoders were
developed.

The Priority Encoder is another type of combinational
circuit similar to a binary encoder, except that it generates an
output code based on the highest prioritised input. Priority encoders
are used extensively in digital and computer systems as
microprocessor interrupt controllers where they detect the highest
priority input.

In the next tutorial about combinational logic devices, we will
look at complementary function of the encoder called
a Decoder which convert an n-bit input code to one of its 2" output
lines.

Binary Decoder

A Decoder is the exact opposite to that of an "Encoder” we
looked at in the last tutorial. It is basically, a combinational type
logic circuit that converts the binary code data at its input into one
of a number of different output lines, one at a time producing an
equivalent decimal code at its output. Binary Decodershave inputs

131

of 2-bit, 3-bit or 4-bit codes depending upon the number of data
input lines, and a n-bitdecoder has 2" output lines. Therefore, if it
receives n inputs (usually grouped as a binary or Boolean number)
it activates one and only one of its 2" outputs based on that input
with all other outputs deactivated. A decoders output code normally
has more bits than its input code and practical binary decoder
circuits include, 2-to-4, 3-to-8 and 4-to-16 line configurations.

A binary decoder converts coded inputs into coded outputs,
where the input and output codes are different and decoders are
available to "decode" either a Binary or BCD (8421 code) input
pattern to typically a Decimal output code. Commonly available
BCD-to-Decimal decoders include the TTL 7442 or the CMOS
4028. An example of a 2-to-4 line decoder along with its truth table
is given below. It consists of an array of four NAND gates, one of
which is selected for each combination of the input signals A and B.

A 2-t0-4 Binary Decoders.

:}_
Binary A= DC ﬂ 0 D_ . Decoded
D_

Input (0) 1 Output
B D,
Dy

[1]

A — — [A B Dy Dy D: Dy

B —» —» D, 0O 0|1 0 0 O

Dgu:i:;er - 0 1 0 1.0 O

- U 1 0 0 0 1 0

I 1 1 0O 0 0 1

In this simple example of a 2-to-4 line binary decoder, the
binary inputs A and B determine which output line from DO to D3 is
"HIGH" at logic level "1" while the remaining outputs are held
"LOW" at logic "0" so only one output can be active (HIGH) at any
one time. Therefore, whichever output line is "HIGH" identifies the
binary code present at the input, in other words it "de-codes" the
binary input and these types of binary decoders are commonly
used asAddress Decodersin microprocessor memory
applications.

- _."Dl_'l
—e D,
B —» — D2
— Dy

—
—= Dy
—e Ds

——,

-~ @AWk -O

Enable —={ EN
—ae Dy

74L.S138 Binary Decoder

Some binary decoders have an additional input labelled
"Enable" that controls the outputs from the device. This allows the
decoders outputs to be turned "ON" or "OFF" and we can see that
the logic diagram of the basic decoder is identical to that of the
basic demultiplexer. Therefore, we say that a demultiplexer is a
decoder with an additional data line that is used to enable the
decoder. An alternative way of looking at the decoder circuit is to
regard inputs A, B and C as address signals. Each combination
of A, B or C defines a unique address which can access a location
having that address.

Sometimes it is required to have a Binary Decoder with a
number of outputs greater than is available, or if we only have small
devices available, we can combine multiple decoders together to
form larger decoder networks as shown. Here a much larger 4-to-
16 line binary decoder has been implemented using two smaller 3-
to-8 decoders.

6.1.12 :A 4-t0-16 Binary Decoder Configuration.

133

Lt e

3-to-8

Decoder
@M s WkKN =D

_.'Dﬁ
_-'D'I
_-"DI
_-.Dl
_-"Dd
_-"D'ﬁ.
_""DB

S

N

N,
3-to-8
Decoder

-~k WwN = O

EN

=D
._p.Dg
—D1g
—* Dy
_..D.Iz
-.D‘:!
—=Dyy

_.'D‘:ﬁ

4-t0-16 Line Decoder Implemented

with two 3-to-8 Decoders

Inputs A, B, C are used to select which output on either
decoder will be at logic "1" (HIGH) and input D is used with the
enable input to select which encoder either the first or second will
output the "1".

Example 1: 2x1 Mux
A 2x1 Mux has 2 input lines (Do & D;) , one select input (S),
and one output line (Y). (see Figure 2)

IF S=0,
Else (S=1)

then Y= Dy
Y= D1

134

oo

xXcZ

Figure 2: A 2 X 1 Multiplexer

Thus, the output signal Y can be expressed as:
Y[SD, SD,

Example 2: 4x1 Mux
A 4x1 Mux has 4 input lines (Do, D1, D, D3), two select inputs (So
& S;), and one output line Y. (see Figure 3)

IF S]_So:OO,
then Y= Dy
IF S;1S0=01,
then Y=D;
IF S1S0=10,
then Y=D;
IF S1Sp=11,
then Y= D3

Thus, the output signal Y can be expressed as:

F=FIS_DDD + 57130 D1+31§U Ly +8)8, D,
: u ! !

minterm minterm minterm minterm
mO ml m2 m3

Obviously, the input selected to be passed to the output depends
on the minterm expressions of the select inputs.

135

Dg MUX
41

D1 —_

Dy — |

o

51 S0
Figure 3: A 4
X1

Multiplexer

In General,
For MUXes with n select inputs, the output Y is given by

Y = mgDg + miD1 + myD, + .t Mo n.lD n_l
Where m; =i minterm of the Select Inputs

Thus
2

1
YLy m D
Example 3: Quad 2X1 Mux
Given two 4-bit numbers A and B, design a multiplexer that selects
one of these 2 numbers based on some select signal S. Obviously,
the output (Y) is a 4-bit number.

136

Ao Quad 2-1
A MU X
A /gYO |
Yl
. Y2
Eo - Y3
El r
E2
E3
S

Figure 4: Quad 2 X 1 Multiplexer

The 4-bit output number Y is defined as follows:
Y = A IF S=0, otherwise Y =B

The circuit is implemented using four 2x1 Muxes, where the
output of each of the Muxes gives one of the outputs (Y)).

Combinational Circuit Implementation using Muxes

Problem Statement:

Given a function of n-variables, show how to use a MUX to
implement this function.

This can be accomplished in one of 2 ways:
Using a Mux with n-select inputs
Using a Mux with n-1 select inputs

Method 1: Using a Mux with n-select inputs
n variables need to be connected to n select inputs. For a MUX
with n select inputs, the output Y is given by:

137

Y=mgDg + mD; + m, D, + .2 '_hmzn-lD n

Alternatively,
2

n

1
[l

3M <

O

0

Where m; =i minterm of the Select Inputs

The MUX output expression is a SUM of minterms expression for all
minterms (m;)
which have their corresponding inputs (D;) equal to 1.

Thus, it is possible to implement any function of n-variables using a
MUX with n-select inputs by proper assignment of the input values (D;
{0, 1}).

Y(Spq oenee S1Sp) = Y (minterms)

Example 4: Implement the function F (A, B, C) = (1, 3, 5, 6)
(see Figure 5)

Since number of variables n = 3, this requires a Mux with 3 select inputs,
l.e. an 8x1 Mux
The most significant variable A is connected to the most significant
select input S, while the least significant variable C is connected to the
least significant select input Sq , thus:

Sz = A, Sl = B,

and Spo =C

For the MUX output expression (sum of minterms) to include minterm 1
we assign D; =1

Likewise, to include minterms 3, 5, and 6 in the sum of minterms
expression while excluding minterms 0, 2, 4, and 7, the following input
(Dj) assignments are made

Dl = D3 =
D5 = Ds =1
Do = Dz =

D4:D7:0

o] D

.| b1

o| D2

.| D3

o| D4 v
.| bs -
.| ps

of P 0s

F(AB,C)D
Z(1,3,5,6)AB c

Figure 5: Implementing function with Mux with n select inputs

Method 2: Using a Mux with (n-1) select inputs

Any n-variable logic function can be implemented using a Mux with
only (n-1) select inputs (e.g 4-to-1 mux to implement any 3 variable
function)

This can be accomplished as follows:

Express function in canonical sum-of-minterms form.

Choose n-1 variables to be connected to the mux select
lines.

Construct the truth table of the function, but grouping the n-1
select input variables together (e.g. by making the n-1 select
variables as most significant inputs).

The values of Dj (trrl?ux input line) will be 0, or 1, or nth
variable or complement of n™" variable of value of function F, as will
be clarified by the following example.

Example 5: Implement the function F (A, B, C) =) (1,

2, 6, 7) (see figure 6) This function can be implemented

with a 4-to-1 line MUX.

A and B are applied to the select line, that is

A1S;,B11Sy

The truth table of the function and the implementation are as
shown:

C _N
(—j_Dl
g —P2 F I—
g,80
AB
Al B | C F
—| 0 | 0 | O 0
1 =
L o |0 |1 1 F=C
—| 0 |1 | 0 1
— i)
N 011 0 F=C
—| 1 | 0| 0 0
T 0 1 1 0 F=0
— | 1 1|0 1
LT 11 1 F=1

Figure 6: Implementing function with Mux with n-1 select
inputs

Example 6: Consider the function
F(A,B,C,D)=3(1,3,4,11,12,13,14,15)

This function can be implemented with an 8-to-1 line
MUX (see Figure 7) A, B, and C are applied to the
select inputs as follows:

ALS, , B1S,C1Sy
The truth table and implementation are shown.

A B C DJ|F
0o 0o 0o oo _p
o o o 1|1
o o 1 0|0 g_p
o o 1 1|1
O 1 0 0|1 p_p
o 1 0o 1, 0

Figure 7: Implementing function of Example 6

Example 7: A 1-to-4 line Demux

The input E is directed to one of the outputs, as specified by the two
select lines S; and

So.

Do =EifS;Sp =00 1Dy =S, S¢'E

Dl :Eifslso =01 [Dl :Sl,SO E

D2 =Eif8180 =10 [DZ :Sl SO'E

D3 :Eif8180 =11 LDg :81 So E

A careful inspection of the Demux circuit shows that it is

identical to a 2 to 4 decoder with enable input.
E A Ao

I

;e

|
L

° j

@

Figure 8: A 1-to-4 line demultiplexer

For the decoder, the inputs are A; and Ao, and the enable is input
E. (see figure 9)

For demux, input E provides the data, while other inputs accept the
selection variables.

Although the two circuits have different applications, their logic
diagrams are exactly the same.

Decimal [Enable [Inputs Outputs
value
E A1 Ao Do D1 D2 D3
0 X X 0 0 0 0
0 1 0 0 1 0 0 0
1 1 0 1 0 1 0 0
2 1 1 0 0 0 1 0
3 1 1 1 0 0 0 1

Figure 9: Table for 1-to-4 line demultiplexer

6.2 QUESTIONS:

1. Define Multiplexer.

Write short note on 4 —to- 1 Channel Multiplexer.

3. Explain 4- to -2 Channel Multiplexer With help of suitable
diagram.

4. What is De-Multiplexer?

5. What is Digital Encoder? Explain 4- to -2 Bit Binary Encoder
with help of suitable diagram.

n

©

What is Priority Encoder? Explain 8- to -3 Priority Encoder
with the help of suitable diagram.

List and Explain Applications of Encoder.

Explain in detail Binary Decoder.

Implement the function F(A,B,C,D)=>(1,3,5,8,12,13,16,18)
using 8-to-1 line MUX.

6.3 FURTHER READING:

Digital Electronics - An Introduction to Theory and Practice
by W H Gothmann

Computer Architecture and Parallel Processing by Kai
Hwang, Faye A Briggs , McGraw Hill

Computer Architecture and Organization by William
Stallings

Fundamentals of Computer organization and Design by
Sivarama P. Dandamudi

http://en.wikipedia.org/wiki/Multiplexer

SEQUENTIAL CIRCUITS

Unit structure

7.0 Objectives

7.1 What is sequential logic?

7.2 Filp-Flops
7.1.1 Rs Flip-Flop
7.1.2 J-K Flip-Flop
7.1.3 Master—Slave Flip-Flops
7.1.4 Toggle Flip-Flop (T Flip-Flop)
7.1.5 D Flip-Flop
7.1.6 D Latch

7.3 Questions

7.4 Further Reading

7.0 OBJECTIVES:

After completing this chapter, you will be able to:
+ Understand the basics of Sequential Logic Circuits.

* Learn different types of Flips —Flops, their working and
applications with the help of suitable diagrams.

+ Understand the D Flip-Flop & D Latch with their functioning.

7.1 WHAT IS SEQUENTIAL LOGIC?

Sequential logic elements perform as many different
functions as combinational logic elements; however, they do carry
out certain well-denned functions, which have been given names.

Latch A latch is a 1-bit memory element. You can capture a
single bit in a latch at one instant and then use it later; for example,
when adding numbers you can capture the carry-out in a latch and
use it as a carry-in in the next calculation.

Register The register is just m latches in a row and is able
to store an m-bit word; that is, the register is a device that stores

one memory word. A computer's memory is just a very large array
of registers.

Shift register A shift register is a special-purpose register
that can move the bits of the word it holds left or right; for example
the 8-bit word 00101001 can be shifted left to give 01010010.
Counter A counter is another special-purpose register that holds an
m-bit word. However, when a counter is triggered (i.e. clocked) its
contents increase by 1; for example, if a counter holding the binary
equivalent of 42 is clocked, it will hold the value 43. Counters can
count up or down, by 1 or any other number, or they can count
through any arbitrary sequence.

State machines A state machine is a digital system that
moves from one state to another each time it is triggered. You can
regard a washing machine controller as a state machine that steps
though all the processes involved in washing (at a rate depending
on the load, the temperature, and its preselected functions).
Ultimately, the computer itself is a nothing more than a state
machine controlled by a program and its data.

Sequential logic circuit
Input M Output
Combinational logic
bt
[~~~ The combinational logic
is composed of comventional
AND, OR, and NOT gates
A

The memory holds
the previous output
(i.e. state) and uses it
to generate the next
output

7.2 FILP-FLOPS

In electronics, a flip-flop or latch is a circuit that has two
stable states and can be used to store state information. The circuit
can be made to change state by signals applied to one or more
control inputs and will have one or two outputs. It is the basic
storage element in sequential logic. Flip-flops and latches are a

fundamental building block of digital electronics systems used in
computers, communications, and many other types of systems.

Flip-flops and latches are used as data storage elements.
Such data storage can be used for storage of state, and such a
circuit is described as sequential logic. When used in a finite-state
machine, the output and next state depend not only on its current
input, but also on its current state (and hence, previous inputs). It
can also be used for counting of pulses, and for synchronizing
variably-timed input signals to some reference timing signal.

Flip-flops can be either simple (transparent or opaque) or
clocked (synchronous or edge-triggered); the simple ones are
commonly called latches. The word latch is mainly used for storage
elements, while clocked devices are described as flip-flops.

7.2.1: RS Flip-Flop

« A RS-flipflop is the simplest possible memory element.

e It is constructed by feeding the outputs of two NOR gates
back to the other NOR gates input.

e« The inputs R and S are referred to as the Reset and Set
inputs, respectively.

e To understand the operation of the RS-flipflop (or RS-latch)
consider the following scenarios:

o S=1 and R=0: The output of the bottom NOR gate is
equal to zero, Q'=0.

o Hence both inputs to the top NOR gate are equal to
one, thus, Q=1.

o Hence, the input combination S=1 and R=0 leads to
the flipflop being set to Q=1.

o S=0 and R=1: Similar to the arguments above, the
outputs become Q=0 and Q'=1.

o We say that the flipflop is reset.

o S=0 and R=0: Assume the flipflop is set (Q=0 and
Q'=1), then the output of the top NOR gate remains at
Q=1 and the bottom NOR gate stays at Q'=0.

o Similarly, when the flipflop is in a reset state (Q=1 and
Q'=0), it will remain there with this input combination.

o Therefore, with inputs S=0 and R=0, the flipflop
remains in its state.

o S=1 and R=1: This input combination must be
avoided.

« We can summarize the operation of the RS-flipflop by the
following truth table.

R 'S Q Q' Comment

0 |0 Q Q' Hold state
0 11 0 Set

10 0 1 Reset
1/1/? |? Avoid

« Note, the output Q' is simply the inverse of Q.
e An RS flipflop can also be constructed from NAND gates.

RS Flip-Flop composed of two NOR
Gates.

Qf

R-S Flip-Flop with Active LOW Inputs

The Figure below shows a NAND gate implementation of an
R-S flip-flop with active LOW inputs. The two NAND gates are
cross-coupled. That is, the output of NAND 1 is fed back to one of
the inputs of NAND 2, and the output of NAND 2 is fed back to one
of the inputs of NAND 1. The remaining inputs of NAND 1 and
NAND 2 are the S and R inputs. The outputs of NAND 1 and NAND
2 are respectively Q and Q outputs.

The fact that this configuration follows the function table can
be explained. We will look at different entries of the function table,
one at a time.

Let us take the case of R = S = 1 (the first entry in the
function table). We will prove that, for R = S = 1, the Q output
remains in its existing state. In the truth table, Qn represents the
existing state and Qn+1 represents the state of the flip-flop after it
has been triggered by an appropriate pulse at the R or S input. Let
us assume that Q = 0 initially. This ‘0’ state fed back to one of the

inputs of gate 2 ensures that Q = 1. The ‘1’ state of Q fed back to
one of the inputs of gate 1 along with S = 1 ensures that Q = 0.
Thus, R = S = 1 holds the existing stage. Now, if Q was initially in
the ‘1’ state and not the ‘0’ state, this ‘1’ fed back to one of the
inputs of gate 2 along with R = 1 forces Q to be in the ‘0’ state. The
‘0’ state, when fed back to one of the inputs of gate 1, ensures that
Q remains in its existing state of logic ‘1. Thus, whatever the state
of Q, R =S =1 holds the existing state.

Let us now look at the second entry of the function table
where S = 0 and R = 1. We can see that such an input combination
forces the Q output to the ‘1’ state. On similar lines, the input
combination S = 1 and R = 0 (third entry of the truth table) forces
the Q output to the ‘0’ state. It would be interesting to analyze what
happens when S = R = 0. This implies that both Q and Q outputs
should go to the ‘1’ state, as one of the inputs of a NAND gate
being a logic ‘O’ should force its output to the logic ‘1’ state
irrespective of the status of the other input. This is an undesired
state as Q and Q outputs are to be the complement of each other.
The input condition (i.e. R=S =0) that causes such a situation is
therefore considered to be an invalid condition and is forbidden.
Figure shows the logic symbol of such a flip-flop. The R and S
inputs here have been shown as active LOW inputs, which is
obvious as this flip-flop of Fig. 10.17(a) is SET (that is, Q=1) when
S =0 and RESET (that is, Q=0) when R = 0. Thus, R and S are
active when LOW. The term CLEAR input is also used sometimes
in place of RESET. The operation of the R-S flip-flop can be
summarized as follows:

1. SET=RESET= 1 is the normal resting condition of the flip-flop. It
has no effect on the output state of the flip-flop. Both Q and Q
outputs remain in the logic state they were in prior to this input
condition.

2. SET = 0 and RESET = 1 sets the flip-flop. Q and Q respectively
go to the ‘1’ and ‘O’ state.

3. SET =1 and RESET =0 resets or clears the flip-flop. Q and Q
respectively go to the ‘0’ and ‘1’ state.

4. SET = RESET = 0 is forbidden as such a condition tries to set
(that is, Q = 1) and reset (that is, Q = 1) the flip-flop at the same
time. To be more precise, SET and RESET inputs in the R-S flip-
flop cannot be active at the same time.

The R-S flip-flop is also referred to as an R-S latch. This is because
any combination at the inputs immediately manifests itself at the
output as per the truth table.

()

Ho change

REBET

855]
tn
1
0

G- E o=(m
o0 = =|m

L]

Clocked R-S Flip-Flop

In the case of a clocked R-S flip-flop, or for that matter any
clocked flip-flop, the outputs change states as per the inputs only
on the occurrence of a clock pulse. The clocked flip-flop could be a
level-triggered one or an edge-triggered one. The two types are
discussed. First let us see how the flip-flop of the previous section
can be transformed into a clocked flip-flop. Figure (a) shows the
logic implementation of a clocked flip-flop that has active HIGH
inputs. The function table for the same is shown in Fig. (b) and is
self-explanatory.

The basic flip-flop is the same as that shown in Fig. (a). The
two NAND gates at the input have been used to couple the R and S
inputs to the flip-flop inputs under the control of the clock signal.
When the clock signal is HIGH, the two NAND gates are enabled
and the S and R inputs are passed on to flip-flop inputs with their
status complemented. The outputs can now change states as per
the status of R and S at the flip-flop inputs. For instance, when S =
1 and R = 0 it will be passed on as 0 and 1 respectively when the
clock is HIGH. When the clock is LOW, the two NAND gates
produce a ‘1’ at their outputs, irrespective of the S and R status.

This produces a logic ‘1’ at both inputs of the flip-flop, with
the result that there is no effect on the output states. Figure shows
the clocked R-S flip-flop with active LOW R and S inputs. The logic
implementation here is a modification of the basic R-S flip-flop in
Fig. The truth table of this flip-flop, as given in Fig., is self-
explanatory.

Qo [V
Indetar

Indetar

.b.b.b-bnnnﬂg
0 =

= = 0O 0O = = 0O Q|
= O == 0 == o = 0|1
=]

,.,
L)

-l-b-b-iﬂﬁﬂng

= = 0O 0O = =< O 9|6
= 0 = O =80 = o|3
i
-

E

SR
11 10

=
==

|

Gl

g
-

2]

Cik

S A | Tk | Qo+

i} 0 a Qp

o 0 1 Qn

1] 1 a Qn

o 1 1 a

1 0 a Qn

1 0 1 1

1 1 a Qp

1 1 1 Irwralid
L}

Level-Triggered and Edge-Triggered Flip-Flops

In a level-triggered flip-flop, the output responds to the data
present at the inputs during the time the clock pulse level is HIGH
(or LOW). That is, any changes at the input during the time the
clock is active (HIGH or LOW) are reflected at the output as per its
function table. The clocked R-S flip-flop described is a level-
triggered flip-flop that is active when the clock is HIGH.

In an edge-triggered flip-flop, the output responds to the data
at the inputs only on LOW-to-HIGH or HIGH-to-LOW transition of
the clock signal. The flip-flop in the two cases is referred to as
positive edge triggered and negative edge triggered respectively.
Any changes in the input during the time the clock pulse is HIGH
(or LOW) do not have any effect on the output. In the case of an
edge triggered flip-flop, an edge detector circuit transforms the
clock input into a very narrow pulse that is a few nanoseconds
wide. This narrow pulse coincides with either LOW-to-HIGH or
HIGH-to-LOW transition of the clock input, depending upon whether
it is a positive edge-triggered flip-flop or a negative edge-triggered
flip-flop. This pulse is so narrow that the operation of the flip—flop
can be considered to have occurred on the edge itself. Figure
shows the clocked R-S flip-flop of Fig. with the edge detector block
incorporated in the clock circuit. Figures (a) and (b) respectively
show typical edge detector circuits for positive and negative edge
triggering. The width of the narrow pulse generated by this edge
detector circuit is equal to the propagation delay of the inverter.
Figure 10.25 shows the circuit symbol for the flip-flop of Fig. for the
positive edge-triggered mode and the negative edge-triggered
mode.

&
Dstté?ﬁur

=]

=

ol

(b}

Clk

Sy

Cik

g

Clk

Mo PN

{b)

7.2.2: J-K Flip-Flop

A J-K flip-flop behaves in the same fashion as an R-S flip-
flop except for one of the entries in the function table. In the case of
an R-S flip-flop, the input combination S = R = 1 (in the case of a
flip-flop with active HIGH inputs) and the input combination S = R =
0 (in the case of a flip-flop with active LOW inputs) are prohibited.
In the case of a J-K flip-flop with active HIGH inputs, the output of
the flip-flop toggles, that is, it goes to the other state, for J =K =1.
The output toggles for J = K = 0 in the case of the flip-flop having
active LOW inputs. Thus, a J-K flip-flop overcomes the problem of a
forbidden input combination of the R-S flip-flop. Figures (a) and (b)

respectively show the circuit symbol of level-triggered J-K flip-flops
with active HIGH and active LOW inputs, along with their function
tables.

—J Q— Operation Mede | J | K | Ck|Qnyq
SET 1 ol 1]
— FF RESET 0 1 1] 0
Cik
NC CHANGE 0 o 1] Qn
— Ik a— TOGGLE 1 11| G
(a)
—dJ Q—- OCperation Mode | J K | Ck |Qneq
SET 0 1 111
— Ck FF RESET 1 o] 1|0
NC CHANGE 1 1 1| Qn
— [} P TOGGLE 0 o[1| Ty
{b)

Figure shows the realization of a J-K flip-flop with an R-S
flip-flop. The characteristic tables for a J-K flip-flop with active HIGH
J and K inputs and a J-K flip-flop with active LOW J and K inputs
are respectively shown in Figs (a) and (b). The corresponding
Karnaugh maps are shown in Fig. (c) for the characteristics table of
Fig. (a) and in Fig. (d) for the characteristic table of Fig. (b). The
characteristic equations for the Karnaugh maps of Fig (c) and (d)
are respectively

FF

=]
3

e R R o T . T o Y o |
= = e = I =1 S
T = R = R = T = N -
g.sg.s.».sggf

)

[
3

Qnl

E R = T = R = = |
== =k OO = = O O =
R T T = T A -
L= BEC N = R = T - N

=
=

JK
Qp oo i} " 10

]

J-K Flip-Flop with PRESET and CLEAR Inputs

It is often necessary to clear a flip-flop to a logic ‘0’ state (Qn
= 0) or preset it to a logic ‘1’ state (Qn =1). An example of how this
is realized is shown in Fig. The flip-flop is cleared (that is, Qn = 0)
whenever the CLEAR input is ‘0’ and the PRESET input is ‘1. The
flip-flop is preset to the logic ‘1’ state whenever the PRESET input
is ‘0’ and the CLEAR input is ‘1. Here, the CLEAR and PRESET
inputs are active when LOW. Figure shows the circuit symbol of this
presettable, clearable, clocked J-K flip-flop. Figure shows the
function table of such a flip-flop. It is evident from the function table
that, whenever the PRESET input is active, the output goes to the
‘1’ state irrespective of the status of the clock, J and K inputs.

Similarly, when the flip-flop is cleared, that is, the CLEAR input is
active, the output goes to the ‘0’ state irrespective of the status of
the clock, J and K inputs. In a flip-flop of this type, both PRESET
and CLEAR inputs should not be made active at the same time.

PAESET
J }
— o
C [
Ck]
L | - _
—)
K
CLEAR
J}m
— Pr ar—
—Jok FF
— K el al—
(b}
PR oL CLK J K Ot | Onn
0 1 X X X 1 0
1 0 X X X 0 9
o 0 X X X - -
1 1 1 0 0 On Gn
1 1 1 1 0 1 0
1 1 1 0 1 0 1
1 1 1 1 1 Toggle
1 1 0 X X a, Gn

(€]

7.2.3: Master-Slave Flip-Flops
Whenever the width of the pulse clocking the flip-flop is
greater than the propagation delay of the flip-flop, the change in
state at the output is not reliable. In the case of edge-triggered flip-
flops, this pulse width would be the trigger pulse width generated by
the edge detector portion of the flip-flop and not the pulse width of
the input clock signal. This phenomenon is referred to as the race
problem. As the propagation delays are normally very small, the

likelihood of the occurrence of a race condition is reasonably high.
One way to get over this problem is to use a master—slave
configuration. Figure (a) shows a master—slave flip-flop constructed
with two J-K flip-flops.

The first flip-flop is called the master flip-flop and the second
is called the slave. The clock to the slave flip-flop is the
complement of the clock to the master flip-flop. When the clock
pulse is present, the master flip-flop is enabled while the slave flip-
flop is disabled. As a result, the master flip-flop can change state
while the slave flip-flop cannot. When the clock goes LOW, the
master flip-flop gets disabled while the slave flip-flop is enabled.
Therefore, the slave J-K flip-flop changes state as per the logic
states at its J and K inputs. The contents of the master flip-flop are
therefore transferred to the slave flip-flop, and the master flip-flop,
being disabled, can acquire new inputs without affecting the output.
As would be clear from the description above, a master— slave flip-
flop is a pulse-triggered flip-flop and not an edge-triggered one.
Figure (b) shows the truth table of a master—slave J-K flip-flop with
active LOW PRESET and CLEAR inputs and active HIGH J and K
inputs. The master—slave configuration has become obsolete. The
newer IC technologies such as 74LS, 74AS, 74ALS, 74HC and
74HCT do not have master—slave flip-flops in their series.

— Q J a—
Mastor Slava
L+ 4 FF Clk FE
K a K o—
[
L
(s}
PA CLA CLK J K Ot On
] 1 x x X 1 1]
1 o x x X O 1
a 13 X X X Unsiable
1 1 a 0 On On
1 1 1 1] 1 1]
1 1 a 1 O 1
1 1 1 1 Toggle
L]

7.2.4: Toggle Flip-Flop (T Flip-Flop)

The output of a toggle flip-flop, also called a T flip-flop,
changes state every time it is triggered at its T input, called the
toggle input. That is, the output becomes ‘1’ if it was ‘0’ and ‘0’ if it
was ‘1. Figures (a) and (b) respectively show the circuit symbols of

positive edge-triggered and negative edge-triggered T flip-flops,
along with their function tables.

If we consider the T input as active when HIGH, the
characteristic table of such a flip-flop is shown in Fig. (c). If the T
input were active when LOW, then the characteristic table would be
as shown in Fig. (d). The Karnaugh maps for the characteristic
tables of Figs 10.34(c) and (d) are shown in Figs(e) and (f)
respectively. The characteristic equations as written from the
Karnaugh maps are as follows:

Qn-l-] = T-‘Qn +?‘Ql
Qn-l-] = ?‘E_FT:QI

It is obvious from the operational principle of the T flip-flop
that the frequency of the signal at the Q output is half the frequency
of the signal applied at the T input. A cascaded arrangement of nT
flip-flops, where the output of one flip-flop is connected to the T
input of the following flip-flop, can be used to divide the input signal
frequency by a factor of 2". Figure shows a divide-by-16circuit built
around a cascaded arrangement of four T flip-flops.

o—

JUL —

=T FF t 0 1

t 1 0

(=}

|1 t T On Ot

— % l] 1
l 1 0
L]
Qy T L= Y
o o 0
o 1 1
1 o 1
1 1 0
]
G T Qg
0 0 1
0 1 0
1 0 0
1 1 1

(d)

On 0 1
0 1
1 1
T (=)
Cn 0 1
0 1

(M

JULL, 2o L & L e Lo [T L

J-K Flip-Flop as a Toggle Flip-Flop

If we recall the function table of a J-K flip-flop, we will see
that, when both J and K inputs of the flip-flop are tied to their active
level (‘1 level if J and K are active when HIGH, and ‘0’ level when J
and K are active when LOW), the flip-flop behaves like a toggle flip-
flop, with its clock input serving as the T input. In fact, the J-K flip-
flop can be used to construct any other flip-flop. That is why it is
also sometimes referred to as a universal flip-flop. Figure shows
the use of a J-K flip-flop as a T flip-flop.

7.2.5: D Flip-Flop

A D flip-flop, also called a delay flip-flop, can be used to
provide temporary storage of one bit of information. Figure (a)
shows the circuit symbol and function table of a negative edge-
triggered D flip-flop. When the clock is active, the data bit (O or 1)
present at the D input is transferred to the output. In the D flip-flop
of Fig., the data transfer from D input to Q output occurs on the
negative-going (HIGH-to-LOW) transition of the clock input. The D
input can acquire new status

D Clk L]

— dJ=ck FF

a) =]
O
Gn D GI‘rH G‘n 0 1
0 0 0
0 1
0 1 1
1 0 0 1 1
1 1 1
Qny1 =D

{c) (d)

J-K Flip-Flop as D Flip-Flop

Figure shows how a J-K flip-flop can be used as a D flip-flop.
When the D input is a logic ‘1’, the J and K inputs are a logic ‘1’ and
‘0’ respectively. According to the function table of the J-K flip-flop,
under these input conditions, the Q output will go to the logic ‘1’
state when clocked.

Also, when the D input is a logic ‘0", the J and K inputs are a
logic ‘0’ and ‘1’ respectively. Again, according to the function table
of the J-K flip-flop, under these input conditions, the Q output will go
to the logic ‘0’ state when clocked. Thus, in both cases, the D input
is passed on to the output when the flip-flop is clocked.

D?J Q p—

-]
~>ck FF

7.2.6 D Latch

In a D latch, the output Q follows the D input as long as the
clock input (also called the ENABLE input) is HIGH or LOW,
depending upon the clock level to which it responds. When the
ENABLE input goes to the inactive level, the output holds on to the
logic state it was in just prior to the ENABLE input becoming
inactive during the entire time period the ENABLE input is inactive.

Enabila
— D Q
Dr-Impurt
—{ Enable FF
Q-Output
(a)
L 3 3 v L
CLK
— D Q
D-Input ! ! ! !
>"(.‘.Ilr. FF
Q-Dutput

(b}

A D flip-flop should not be confused with a D latch. In a D
flip-flop, the data on the D input are transferred to the Q output on
the positive- or negative-going transition of the clock signal,
depending upon the flip-flop, and this logic state is held at the
output until we get the next effective clock transition. The difference
between the two is further illustrated in Figs (a) and (b) depicting
the functioning of a D latch and a D flip-flop respectively.

7.3 QUESTIONS:

What is Sequential Logic?

What is Shift Register?

Explain state machine with help of suitable diagram.
What is Flip-Flop? Where it is used?

Write detail Note on RS Flip-Flop.

Explain Level- Triggered and Edged —Triggered Flip-Flops.
Explain J-K Flip- Flop with help of suitable diagram.
Write short note on Master —Slave Flip-Flop.

. Explain T Flip-Flop.

10. Explain the J-K Flip-Flop as D Flip-Flop.

11. Write Short note on D Latch.

©o NGO hAWDNR

7.4 FURTHER READING:

+ Digital Electronics - An Introduction to Theory and Practice
by W H Gothmann

Computer Architecture and Parallel Processing by Kai
Hwang, Faye A Briggs , McGraw Hill

L)

5

S

5

S

Computer Architecture and Organization by William
Stallings

+** Fundamentals of Computer organization and Design by
Sivarama P. Dandamudi

COUNTERS AND REGISTERS

Unit Structure

8.0 Objectives
8.1 Introduction
8.2 Counters

8.2.1: Ripple (Asynchronous) Counter
8.2.2: Binary Ripple Counter

8.2.3: Synchronous Counter

8.2.4: UP/DOWN Counters

8.2.5: Presettable Counters

8.3 Shift Registers

8.3.1: Serial-in to Parallel-out (SIPO) 4-bit Serial-in to
Parallel-out Shift Register

8.3.2: 4-bit Serial-in to Serial-out Shift Register

8.3.3: 4-bit Parallel-in to Serial-out Shift Register

8.3.4: 4-bit Parallel-in to Parallel-out Shift Register

8.3.5: Summary of Shift Registers

8.4 Questions
8.5 Further Reading

8.0 OBJECTIVES:

After completing this chapter, you will be able to:

7
A X4

5

S

5

S

Understand the electronics parts like counters & Shift
Registers.

Understand the structure and working of Asynchronous
counters with help of suitable diagrams.

Understand the structure and working of Synchronous
counters with help of suitable diagrams.

Learn the basics of Shift Register of different types with help
of appropriate diagrams.

8.1 INTRODUCTION:

Counters and registers belong to the category of MSI
sequential logic circuits. They have similar architecture, as both
counters and registers comprise a cascaded arrangement of more
than one flip-flop with or without combinational logic devices. Both
constitute very important building blocks of sequential logic, and
different types of counter and register available in integrated circuit
(IC) form are used in a wide range of digital systems. While
counters are mainly used in counting applications, where they
either measure the time interval between two unknown time
instants or measure the frequency of a given signal, registers are
primarily used for the temporary storage of data present at the
output of a digital circuit before they are fed to another digital
circuit. We are all familiar with the role of different types of register
used inside a microprocessor, and also their use in microprocessor-
based applications. Because of the very nature of operation of
registers, they form the basis of a very important class of counters
called shift counters.

8.2 COUNTERS:

8.2.1: Ripple (Asynchronous) Counter

A ripple counter is a cascaded arrangement of flip-flops
where the output of one flip-flop drives the clock input of the
following flip-flop. The number of flip-flops in the cascaded
arrangement depends upon the number of different logic states that
it goes through before it repeats the sequence, a parameter known
as the modulus of the counter.

In a ripple counter, also called an asynchronous counter or a
serial counter, he clock input is applied only to the first flip-flop,
also called the input flip-flop, in the cascaded arrangement. The
clock input to any subsequent flip-flop comes from the output of its
immediately preceding flip-flop. For instance, the output of the first
flip-flop acts as the clock input to the second flip-flop, the output of
the second flip-flop feeds the clock input of the third flip-flop and
so on. In general, in an arrangement of n flip-flops, the clock
input to the nth flip-flop comes from the output of the (n — 1)™ flip-
flop for n > 1. Figure shows the generalized block schematic
arrangement of an n-bit binary ripple counter.

— J —.J —14J —J Cn
o3 Qo Qn-
Clack) —l
> FF1 > FF2 [FF(n-1) [~ FF(n)
— K — K — K —K

As a natural consequence of this, not all flip-flops change
state at the same time. The second flip-flop can change state
only after the output of the first flip-flop has changed its state. That
is, the second flip-flop would change state a certain time delay
after the occurrence of the input clock pulse owing to the fact that
it gets its own clock input from the output of the first flip-flop and
not from the input clock. This time delay here equals the sum of
propagation delays of two flip-flops, the first and the second flip-
flops. In general, the nth flip-flop will change state only after a
delay equal to n times the propagation delay of one flip-flop. The
term ‘ripple counter comes from the mode in which the clock
information ripples through the counter. It is also called an
‘asynchronous counter’ as different flip-flops comprising the
counter do not change state in synchronization with the input clock.
In a counter like this, after the occurrence of each clock input
pulse, the counter has to wait for a time period equal to the sum
of propagation delays of all flip-flops before the next clock pulse
can be applied. The propagation delay of each flip-flop, of course,
will depend upon the logic family to which it belongs.

Modulus of a Counter

The modulus (MOD number) of a counter is the number of
different logic states it goes through before it comes back to the
initial state to repeat the count sequence. An n-bit counter that
counts through all its natural states and does not skip any of the

states has a modulus of 2" . We can see that such counters
have a modulus that is an integral power of 2, that is, 2, 4, 8, 16
and so on. These can be modified with the help of additional

combinational logic to get a modulus of less than 2N,

To determine the number of flip-flops required to build a
counter having a given modulus, identify the smallest integer m
that is either equal to or greater than the desired modulus and is
also equal to an integral power of 2. For instance, if the desired
modulus is 10, which is the case in a decade counter, the
smallest integer greater than or equal to 10 and which is also an
integral power of 2 is 16. The number of flip-flops in this case

would be 4, as 16 = 24 . On the same lines, the number of flip-

flops required to construct counters with MOD numbers of 3, 6, 14,
28 and 63 would be 2, 3, 4, 5 and 6 respectively. In general, the
arrangement of a minimum number of N flip-flops can be used to
construct any counter with a modulus given by the equation

2N —1 4+ 1 < modulus < 2N

8.2.2: Binary Ripple Counter

The operation of a binary ripple counter can be best
explained with the help of a typical counter of this type. Figure (a)
shows a four-bit ripple counter implemented with negative edge-
triggered J-K flip-flops wired as toggle flip-flops. The output of the
first flip-flop feeds the clock input of the second, and the output of
the second flip-flop feeds the clock input of the third, the output of
which in turn feeds the clock input of the fourth flip-flop. The
outputs of the four flip-flops are designated as Qg (LSB flip-flop),
Q1.,Q2 and Q3 (MSB flip-flop). Figure (b) shows the waveforms
appearing at Qo , Q1 , Q2 and Q3 outputs as the clock signal

goes through successive cycles of trigger pulses. The counter
functions as follows.

Let us assume that all the flip-flops are initially cleared to the
‘0’ state. On HIGH-to-LOW transition of the first clock pulse, Qo

goes from ‘0O’ to ‘1’ owing to the toggling action. As the flip-flops
used are negative edge-triggered ones, the ‘0’ to ‘1’ transition of
Qo does not trigger flip-flop FF1. FF1, along with FF2 and FF3,
remains in its ‘O’ state. So, on the occurrence of the first
negative-going clock transition, Qo = 1, Q1 = 0, Q2 = 0 and

Q3= 0.

On the HIGH-to-LOW transition of the second clock pulse,
Qo toggles again. That is, it goes from ‘1’ to ‘0’. This ‘1’ to ‘0’
transition at the Qo output triggers FF1, the output Q1 of which
goes from ‘0’ to ‘1. The Q2 and Q3 outputs remain unaffected.
Therefore, immediately after the occurrence of the second HIGH-
to-LOW transition of the clock signal, Q9 =0,Q1 =1,Q2 =0
and Q3 = 0. On similar lines, we can explain the logic status of
Qo0 , Q1, Q2 and Q3 outputs immediately after subsequent clock
transitions. The logic status of outputs for the first 16 relevant
(HIGH-to-LOW in the present case) clock signal transitions is
summarized in Table.

Thus, we see that the counter goes through 16 distinct
states from 0000 to 1111 and then, on the occurrence of the
desired transition of the sixteenth clock pulse, it resets to the
original state of 0000 from where it had started. In general, if we

had N flip-flops, we could count up to 2N pulses before the

counter resets to the initial state. We can also see from the Qg ,
Q1, Q2 and Q3 waveforms, as shown

1

—J — J — J —id

Qo @ Q) Q
Clock —l —|
> FFO > FFi > FF2 > FF3
—K — K — K —K
Qg [+ 3] Qo2 Q3
(a)

amnna L 1 U U UL fﬂ%

Qq-Output |
L
Qz-Output |
Q3-Output N
(b)
Clock signal transition number Qy Q, 0, O,
After first clock transition 1 0 0 0
After second clock transition 0 1 0 0
After third clock transition 1 1 0 0
After fourth clock transition 0 0 1 0
After fifth clock transition 1 0 1 0
After sixth clock transition 0 1 1 0
After seventh clock transition 1 1 1 0
After eighth clock transition 0 0 0 1
After ninth clock transition 1 0 0 1
After tenth clock transition 0 | 0 1
After eleventh clock transition 1 1 0 1
After twelfth clock transition 0 0 1 1
After thirteenth clock transition 1 0 1 1
After fourteenth clock transition 0 | 1 1
After fifteenth clock transition 1 | 1 1
After sixteenth clock transition 0 0 0 0

in Fig. 11.2(b), that the frequencies of the Qo , Q1, Q2 and Q3
waveforms are f/2,f/4, /8 and /16 respectively. Here, f is the
frequency of the clock input. This implies that a counter of this type
can be used as a divide-by-2N circuit, where N is the number of
flip-flops in the counter chain. In fact, such a counter provides
frequency-divided outputs of f/2N | f/2N =1 ¢oN =2 5N =3
, T/2 at the outputs of the N th, (N — 1)th, (N — 2)th, (N — 3)th, ,
first flip-flops. In the case of a four-bit counter of the type shown in
Fig. 11.2(a), outputs are available at f/2 from the Qo output, at
f/4 from the Q1 output, at f/8 from the Q2 output and at /16
from the Q3 output. It may be noted that frequency division is one
of the major applications of counters.

Binary Ripple Counters with a Modulus of Less than 2N

An N -flip-flop binary ripple counter can be modified, as we
will see in the following paragraphs, to have any other modulus

less than 2N with the help of simple externally connected
combinational logic. We will illustrate this simple concept with the
help of an example.

Consider the four-flip-flop binary ripple counter arrangement
of Fig. (a). It uses J-K flip-flops with an active LOW asynchronous
CLEAR input. The NAND gate in the figure has its output connected
to the CLEAR inputs of all four flip-flops. The inputs to this three-
input NAND gate are from the Q outputs of flip-flops FFO, FF1 and
FF2. If we disregard the NAND gate for some time, this counter
will go through its natural binary sequence from 0000 to 1111. But
that is not to happen in the present arrangement. The counter does
start counting from 0000 towards its final count of 1111. The
counter keeps counting as long as the asynchronous CLEAR inputs
of the different flip-flops are inactive. That is, the NAND gate output
is HIGH. This is the case until the counter reaches 0110. With the
seventh clock pulse it tends to go to 0111, which makes all NAND
gate inputs HIGH, forcing its output to LOW. This HIGH-to-LOW
transition at the NAND gate output clears all flip-flop outputs to the
logic ‘O’ state, thus disallowing the counter to settle at 0111.
From the eighth clock pulse onwards, the counter repeats the
sequence. The counter thus always counts from 0000 to 0110 and
resets back to 0000. The remaining nine states, which include
0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111, are
skipped, with the result that we get an MOD-7 counter.

Figure (b) shows the timing waveforms for this counter. By
suitably choosing NAND inputs, one can get a counter with any
MOD number less than 16. Examination of timing waveforms also

reveals that the frequency of the Q2 output is one-seventh of the
input clock frequency.

The waveform at the Q2 output is, however, not

symmetrical as it would be if the counter were to go through its full
binary sequence. The Q3 output stays in the logic LOW state. It

is expected to be so because an MOD-7 counter needs a minimum
of three flip-flops. That is why the fourth flip-flop, which was
supposed to toggle on the HIGH-to-LOW transition of the eighth
clock pulse, and on every successive eighth pulse thereafter, never
gets to that stage. The counter is cleared on the seventh clock
pulse and every successive seventh clock pulse thereafter.

As another illustration, if the NAND gate used in the
counter arrangement of Fig. (a) is a two-input NAND and its
inputs are from the Q1 and Q3 outputs, the counter will go
through 0000 to 1001 and then reset to 0000 again, as, the
moment the counter tends to switch from the 1001 to the 1010
state, the NAND gate goes from the ‘1’ to the ‘O’ state, clearing all
flip-flops to the ‘0’ state.

1,

—J Qb= +—J Q4 — J Qal— — J Q3
ClockIn 4~ cik FFo 4>ck FF1 4>clk FF2 > Ck FF3
— K Clear LK Clear K Clear — K Clear
f I]

Q Qo Q3

(a)

1 2 3 4 5 6 7 a8 9 10 11 12

wen U HUU UL

1 R

Qo

Q

NAND
Output

g-——
(b)

Steps to be followed to design any binary ripple counter that starts
from 0000 and has a modulus of X are summarized as follows:

Determine the minimum number of flip-flops N so that 2N

1.
= X Connect these flip-flops as a binary ripple counter. If 2N
= X, do not go to steps 2 and 3.

2. Identify the flip-flops that will be in the logic HIGH state at the
count whose decimal equivalent is X. Choose a NAND gate with
the number of inputs equal to the number of flip-flops that would
be in the logic HIGH state. As an example, if the objective were to
design an MOD-12 counter, then, in the corresponding count, that
is, 1100, two flip-flops would be in the logic HIGH state. The
desired NAND gate would therefore be a two-input gate.

3. Connect the Q outputs of the identified flip-flops to the inputs of
the NAND gate and the NAND gate output to asynchronous clear
inputs of all flip-flops.

8.2.3: Synchronous Counter

In a synchronous counter, also known as a parallel counter,
all the flip-flops in the counter change state at the same time in
synchronism with the input clock signal. The clock signal in this
case is simultaneously applied to the clock inputs of all the flip-
flops. The delay involved in this case is equal to the propagation

delay of one flip-flop only, irrespective of the number of flip-flops
used to construct the counter. In other words, the delay is
independent of the size of the counter.

Ripple counters discussed thus far in this chapter are
asynchronous in nature as the different flipflops comprising the
counter are not clocked simultaneously and in synchronism with the
clock pulses. The total propagation delay in such a counter, as
explained earlier, is equal to the sum of propagation delays due to
different flip-flops. The propagation delay becomes prohibitively
large in a ripple counter with a large count. On the other hand, in a
synchronous counter, all flip-flops in the counter are clocked
simultaneously in synchronism with the clock, and as a
consequence all flip-flops change state at the same time. The
propagation delay in this case is independent of the number of flip-
flops used.

Since the different flip-flops in a synchronous counter are
clocked at the same time, there needs to be additional logic
circuitry to ensure that the various flip-flops toggle at the right time.
For instance, if we look at the count sequence of a four-bit binary
counter shown in Table, we find that flip-flop FFO toggles with every
clock pulse, flip-flop FF1 toggles only when the output of FFO is in
the ‘1’ state, flip-flop FF2 toggles only with those clock pulses when
the outputs of FFO and FF1 are both in the logic ‘1’ state and flip-
flop FF3 toggles only with those clock pulses when Q0,Q1 and Q2
are all in the logic ‘1’ state. Such logic can be easily implemented
with AND gates. Figure (a) shows the schematic arrangement of a
four-bit synchronous counter. The timing waveforms are shown in
Fig. (b). The diagram is self-explanatory. As an example, ICs 74162
and 74163 are four-bit synchronous counters, with the former being
a decade counter and the latter a binary counter.

A synchronous counter that counts in the reverse or
downward sequence can be constructed in a similar manner by
using complementary outputs of the flip-flops to drive the J and K
inputs of the following flip-flops. Refer to the reverse or downward
count sequence as given in Table. As is evident from the table, FFO
toggles with every clock pulse, FF1 toggles only when QO is logic
‘0’, FF2 toggles only when both Q0 and Q1 are in the logic ‘0’ state
and FF3 toggles only when QO, Q1 and Q2 are in the logic ‘0’ state.
Referring to the four-bit synchronous UP counter of Fig. (a), if the J
and K inputs of flip-flop FF1 are fed from the QO output instead of
the QO output, the inputs to the two-input AND gate are and
instead of Q0 and Q1, and the inputs to the three-input AND gate
are, and instead of Q0, Q1 and Q2, we get a counter that counts in
reverse order. In that case it becomes a four-bit synchronous
DOWN counter.

FFo FF1 FF2 FF3
—d> Clk —q>> Clk —q> Clk — > Clk

Clock
(@)

- UL OUUU LU OUHUL

(o3 -

Qo L

Q3 |

(b)

Count Q Q Q Q Count Q3 .
0 0 0] 0 8 1 0 0 0
1 1 1 1 1 9] 1 1 1
2 1 1 1 0 10 0 1 1 0
3 1 1 0 1 11 0 1 0 1
4 1 1] 0 12] 1 0 0
5 1 0 1 1 13 0 0 1 1
(3] 1 0 1 0 14 0 0 1 0
7 1 0 0 1 15 0 0 0 1

8.2.4: UP/DOWN Counters

Counters are also available in integrated circuit form as
UP/DOWN counters, which can be made to operate as either UP
or DOWN counters. As outlined in Section 11.5, an UP counter is
one that counts upwards or in the forward direction by one LSB

2

every time it is clocked. A four-bit binary UP counter will count as
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,
1010, 1011, 1100, 1101, 1110, 1111, 0000, 0001 and so on. A
DOWN counter counts in the reverse direction or downwards by
one LSB every time it is clocked. The four-bit binary DOWN
counter will count as 0000, 1111, 1110, 1101, 1100, 1011, 1010,
1001, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000,
1111 and so on.

Some counter ICs have separate clock inputs for UP and
DOWN counts, while others have a single clock input and an
UP/DOWN control pin. The logic status of this control pin decides
the counting mode. As an example, ICs 74190 and 74191 are four-
bit UP/DOWN counters in the TTL family with a single clock input
and an UP/DOWN control pin. While IC 74190 is a BCD decade
counter, IC 74191 is a binary counter. Also, ICs 74192 and 74193
are four-bit UP/DOWN counters in the TTL family, with separate
clock input terminals for UP and DOWN counts. While IC 74192
is a BCD decade counter, IC 74193 is a binary counter.

Figure shows a three-bit binary UP/DOWN counter. This is
only one possible logic arrangement. As we can see, the counter
counts upwards when UP control is logic ‘1’ and DOWN control is
logic ‘0'. In this case the clock input of each flip-flop other than the
LSB flip-flop is fed from the normal output of the immediately
preceding flip-flop. The counter counts downwards when the UP
control input is logic ‘0’ and DOWN control is logic ‘1. In this case,
the clock input of each flip-flop other than the LSB flip-flop is fed
from the complemented output of the immediately preceding flip-
flop. Figure shows another possible configuration for a three-bit
binary ripple UP/DOWN counter. It has a common control input.
When this input is in logic ‘1’ state the counter counts downwards,
and when it is in logic ‘0’ state it counts upwards.

1o
UP—CDEtroI

| Qo, |)
o— J Qot— —J Qi | J
Clock
Input TP Clk —> Clk Dw>clk

LK LK Qq K
B Qg |)

=2
DOWN
Control

1c

—J Qo D_Lr—— J Q4 D_|;-r— J Qo—
Clock | J~.ck FFo Ld>ck FF1 L d>ck FF2

Input

4 K 4 K 4K

Up/Down c
Control

8.2.5: Presettable Counters

Presettable counters are those that can be preset to
any starting count either asynchronously (independently of the
clock signal) or synchronously (with the active transition of the
clock signal). The presetting operation is achieved with the help
of PRESET and CLEAR (or MASTER RESET) inputs available on
the flip-flops. The presetting operation is also known as the
‘preloading’ or simply the ‘loading’ operation.

Presettable counters can be UP counters, DOWN
counters or UP/DOWN counters. Additional inputs/outputs
available on a presettable UP/DOWN counter usually include
PRESET inputs, from where any desired count can be loaded,
parallel load (PL) inputs, which when active allow the PRESET
inputs to be loaded onto the counter outputs, and terminal count
(TC) outputs, which become active when the counter reaches the
terminal count.

Figure shows the logic diagram of a four-bit presettable
synchronous UP counter. The data available on P3 , P2 , P1
and Pg inputs are loaded onto the counter when the parallel
load ') input goes LOW.

When the input goes LOW, one of the inputs of all NAND
gates, including the four NAND gates connected-to the PRESET
inputs and the four NAND gates connected to the CLEAR inputs,
goes to the logic ‘1’ state. What reaches the PRESET inputs of
FF3, FF2, FF1 and FFO is , and respectively, and
what reaches their CLEAR inputs is P3 , P2 , P1 and Po
respectively. Since PRESET and CLEAR are active LOW inputs,
the counter flip-flops FF3, FF2, FF1 and FFO will respectively be
loaded with P3 , P2 , P1 and Pg . For example, if P3= 1, the
PRESET and CLEAR inputs of FF3 will be in the ‘0’ and ‘1’ logic
states respectively. This implies that the Q3 output will go to the
logic ‘1’ state. Thus, FF3 has been loaded with P3 . Similarly, if P3

= 0, the PRESET and CLEAR inputs of flip-flop FF3 will be in the
‘1’ and ‘0’ states respectively. The flip-flop output (Q3 output) will

4

be cleared to the ‘0’ state. Again, the flip-flop is loaded with P3
logic status when the input becomes active.

Counter ICs 74190, 74191, 74192 and 74193 are
asynchronously presettable synchronous UP/DOWN counters.
Many synchronous—counters use synchronous presetting whereby
the counter is preset or loaded with the data on the active
transition of the same clock signal that is used for counting.
Presettable counters also have terminal count () outputs, which
allow them to be cascaded together to get counters with higher
MOD numbers. In the cascade arrangement, the terminal count
output of the lower-order counter feeds the clock input of the next
higher-order counter.

Po P1 P2 P3
1 o F D_ ?
J Pr @ J Pr oo —J Pr J Pr s
Clock d>Cck FFo Ld>Clk FF1 ~>Ck FF2 >Clk FF3
K Cr — K CiIr K ciIr K CiIr
7 | 7 | v
PL
PL Ps Po Py Py
——>CIk(UP) TcD p—
f> Clk(Down) TCU p——
@ Q@ Q

onn + + 4 i

8.3 SHIFT REGISTERS:

The Shift Register is another type of sequential logic circuit
that is used for the storage or transfer of data in the form of binary
numbers and then "shifts" the data out once every clock cycle,
hence the name "shift register". It basically consists of several
single bit "D-Type Data Latches”, one for each bit (0 or 1)
connected together in a serial or daisy-chain arrangement so that
the output from one data latch becomes the input of the next latch
and so on. The data bits may be fed in or out of the register serially,
i.e. one after the other from either the left or the right direction, or in
parallel, i.e. all together. The number of individual data latches
required to make up a single Shift Register is determined by the
number of bits to be stored with the most common being 8-bits
wide, i.e. eight individual data latches.

The Shift Register is used for data storage or data
movement and are used in calculators or computers to store data
such as two binary numbers before they are added together, or to
convert the data from either a serial to parallel or parallel to serial
format. The individual data latches that make up a single shift
register are all driven by a common clock (Clk) signal making them
synchronous devices. Shift register IC's are generally provided with
a clear or reset connection so that they can be "SET" or "RESET"
as required.

Generally, shift registers operate in one of four different
modes with the basic movement of data through a shift register
being:

. Serial-in to Parallel-out (SIPO) - the register is loaded with
serial data, one bit at a time, with the stored data being available in
parallel form.

. Serial-in to Serial-out (SISO) - the data is shifted serially
"IN" and "OUT" of the register, one bit at a time in either a left or
right direction under clock control.

. Parallel-in to Serial-out (PISO) - the parallel data is loaded
into the register simultaneously and is shifted out of the register
serially one bit at a time under clock control.

. Parallel-in to Parallel-out (PIPO) - the parallel data is
loaded simultaneously into the register, and transferred together to
their respective outputs by the same clock pulse.

The effect of data movement from left to right through a shift
register can be presented graphically as:

6
Parallel Data Output
u 'Jx B . 4

H‘-‘- T TLSE
- I I I

Serial - o Serial

Data —= = Data

Input 16t | 1- '.:ut 1-bit |7 1-bit Output
” T TLSE

['—|

Parallel Data Input

Also, the directional movement of the data through a shift
register can be either to the left, (left shifting) to the right, (right
shifting) left-in but right-out, (rotation) or both left and right shifting
within the same register thereby making it bidirectional. In this
tutorial it is assumed that all the data shifts to the right, (right
shifting).

8.3.1: Serial-in to Parallel-out (SIPO) 4-bit Serial-in to Parallel-
out Shift Reqgister

L=

Qa Qs Q- Q
& i a
. A F 3 I 3 A
1 | | I
L . D . | I |
— - w fad =] L ad =] L al =) Yl p—t
oenal A [=] e e
Mata in rFrA rro rri rru
—ICI K —IC1 K —IC1 K —JCI K
CLR CLR CLR CLR
. T T T T
Ciear 1 1 1 !
- (]
Liock | _JL_

The operation is as follows. Lets assume that all the flip-flops
(FFA to FFD) have just been RESET (CLEAR input) and that all the
outputs Qa to Qp are at logic level "0" i.e, no parallel data output. If
a logic "1" is connected to the DATA input pin of FFA then on the
first clock pulse the output of FFA and therefore the resulting Qa will
be set HIGH to logic "1" with all the other outputs still remaining
LOW at logic "0". Assume now that the DATA input pin of FFA has
returned LOW again to logic "0" giving us one data pulse or 0-1-0.

The second clock pulse will change the output of FFA to
logic "0" and the output of FFB and Qg HIGH to logic "1" as its
input D has the logic "1" level on it from Qa. The logic "1" has now
moved or been "shifted" one place along the register to the right as

7

it is now at Qa. When the third clock pulse arrives this logic "1"
value moves to the output of FFC (Q¢) and so on until the arrival of
the fifth clock pulse which sets all the outputs Qa to Qp back again
to logic level "0" because the input to FFA has remained constant
at logic level "0".

The effect of each clock pulse is to shift the data contents of
each stage one place to the right, and this is shown in the following
table until the complete data value of 0-0-0-1is stored in the
register. This data value can now be read directly from the outputs
of Qa to Qp. Then the data has been converted from a serial data
input signal to a parallel data output. The truth table and following
waveforms show the propagation of the logic "1" through the
register from left to right as follows.

Basic Movement of Data through a Shift Register
Clock Pulse No QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1
5 0 0 0 0

Data I
Input 0 0

Clk

A5 L

-
fea
——]————k
L
RN

| I
| I
I | I
a nl_ |Iu n:n:u
Ly |1 I |
1.1 I I
g —0 ¢ J o 1 o i o
8] I | I]
A
oy 0 ¢ 0 0 1 0
Q@ —— i | | i
o,
|
0 0 0 0 0
Q@ L0 | |

]

Note that after the fourth clock pulse has ended the 4-bits of
data (0-0-0-1) are stored in the register and will remain there
provided clocking of the register has stopped. In practice the input
data to the register may consist of various combinations of logic "1"
and "0". Commonly available SIPO IC's include the standard 8-bit
74L.S164 or the 74LS594.

Serial-in to Serial-out (SISO)

This shift register is very similar to the SIPO above, except
were before the data was read directly in a parallel form from the
outputs Qa to Qp, this time the data is allowed to flow straight
through the register and out of the other end. Since there is only
one output, the DATA leaves the shift register one bit at a time in a
serial pattern, hence the name Serial-in to Serial-Out Shift
Register or SISO.

The SISO shift register is one of the simplest of the four
configurations as it has only three connections, the serial input (SI)
which determines what enters the left hand flip-flop, the serial
output (SO) which is taken from the output of the right hand flip-flop
and the sequencing clock signal (CIk). The logic circuit diagram
below shows a generalized serial-in serial-out shift register.

8.3.2: 4-bit Serial-in to Serial-out Shift Register

0 L0 F10
Seral 1o ol %o ol allelo el a
Data in .
e
CLK CLK CIK ak | PaEos
Clock _L_

You may think what's the point of a SISO shift register if the
output data is exactly the same as the input data. Well this type
of Shift Register also acts as a temporary storage device or as a
time delay device for the data, with the amount of time delay being
controlled by the number of stages in the register, 4, 8, 16 etc or by
varying the application of the clock pulses. Commonly available IC's
include the 74HC595 8-bit Serial-in/Serial-out Shift Register all with
3-state outputs.

Parallel-in to Serial-out (PISO)

The Parallel-in to Serial-out shift register acts in the opposite
way to the serial-in to parallel-out one above. The data is loaded
into the register in a parallel format i.e. all the data bits enter their
inputs simultaneously, to the parallel input pins Pato Ppof the
register. The data is then read out sequentially in the normal shift-
right mode from the register at Q representing the data present
at P to Pp. This data is outputted one bit at a time on each clock
cycle in a serial format. It is important to note that with this system a
clock pulse is not required to parallel load the register as it is

9

already present, but four clock pulses are required to unload the
data.

8.3.3: 4-bit Parallel-in to Serial-out Shift Reqgister

fik

&
a

o o
rc W]

4.-bit Parallel Data Input

As this type of shift register converts parallel data, such as
an 8-bit data word into serial format, it can be used to multiplex
many different input lines into a single serial DATA stream which
can be sent directly to a computer or transmitted over a
communications line. Commonly available IC's include the
74HC166 8-bit Parallel-in/Serial-out Shift Registers.

Parallel-in to Parallel-out (PIPQO)

The final mode of operation is the Parallel-in to Parallel-out
Shift Register. This type of register also acts as a temporary
storage device or as a time delay device similar to the SISO
configuration above. The data is presented in a parallel format to
the parallel input pins Pato Ppand then transferred together
directly to their respective output pins Qa to Qa by the same clock
pulse. Then one clock pulse loads and unloads the register. This
arrangement for parallel loading and unloading is shown below.

8.3.4: 4-bit Parallel-in to Parallel-out Shift Reqister

4-bit Parallel Data Qutput

lap Qc Qs aal
D Q —t D Q —T D Q —T D O —T
FFA FFB FFC FFD
CLK CLK CLK CLK
JL
Clock I I |
Pop Pc Ps Pa

4 bit Parallel Data Input

The PIPO shift register is the simplest of the four
configurations as it has only three connections, the parallel input

10

(PI) which determines what enters the flip-flop, the parallel output
(PO) and the sequencing clock signal (CIk).

Similar to the Serial-in to Serial-out shift register, this type of

register also acts as a temporary storage device or as a time delay
device, with the amount of time delay being varied by the frequency
of the clock pulses. Also, in this type of register there are no
interconnections between the individual flip-flops since no serial
shifting of the data is required.

8.3.5:Summary of Shift Registers

Then to summarise.

A simple Shift Register can be made using only D-type flip-
Flops, one flip-Flop for each data bit.

The output from each flip-Flop is connected to the D input of the
flip-flop at its right.

Shift registers hold the data in their memory which is moved or
"shifted" to their required positions on each clock pulse.

Each clock pulse shifts the contents of the register one bit
position to either the left or the right.

The data bits can be loaded one bit at a time in a series input
(SI) configuration or be loaded simultaneously in a parallel
configuration (PI).

Data may be removed from the register one bit at a time for a
series output (SO) or removed all at the same time from a
parallel output (PO).

One application of shift registers is converting between serial
and parallel data.

Shift registers are identified as SIPO, SISO, PISO, PIPO, and
universal shift registers.

8.4 QUESTIONS:

arwbd

o

Explain Ripple (Asynchronous) counter in short with help of
suitable diagram.

Explain Binary Ripple counter in brief.

Explain construction & working of Synchronous Counter.
Write short note on Presettable Counters.

What is Shift Register? Explain 4 — bit Serial — in Parallel-out
Shift register with help of suitable diagram.

Explain Serial-in to Serial-out Shift register in detail.

Write detail note on PISO Shift register.

11

8.5 FURTHER READING:

» Digital Electronics - An Introduction to Theory and Practice
by W H Gothmann

Computer Architecture and Parallel Processing by Kai
Hwang, Faye A Briggs , McGraw Hill

L)

5

S

5

S

Computer Architecture and Organization by William
Stallings

*
0.0

Fundamentals of Computer organization and Design by
Sivarama P. Dandamudi

5

S

http://en.wikipedia.org/wiki/Counters

.0

http://en.wikipedia.org/wiki/Shift reqgisters

L)

12

COMPUTER ORGANISATION

Unit Structure

9.0 Objectives
9.1 Computers
9.1.1: Functional Units
9.1.2: Control Unit (CU)
9.1.3: Memory System in a Computer
9.1.4: Secondary Storage
9.1.5: Input Output Devices
9.2 Questions
9.3 Further Reading

9.0 OBJECTIVES:
After completing this chapter, you will be able to:
% Learn the basics about computers.
% Understand the structure & working of computer.
+ Understand of different parts of computers and their work.
¢ Learn about the memory organization within computers.

9.1 COMPUTERS:

A computer as shown in Fig. performs basically five major
operations or functions irrespective of their size and make. These
are 1) it accepts data or instructions by way of input, 2) it stores
data, 3) it can process data as required by the user, 4) it gives
results in the form of output, and 5) it controls all operations inside
a computer. We discuss below each of these operations.

1. Input: This is the process of entering data and programs in to
the computer system. You should know that computer is an
electronic machine like any other machine which takes as inputs
raw data and performs some processing giving out processed data.
Therefore, the input unit takes data from us to the computer in an
organized manner for processing.

13

Pmcemiﬂﬁ I_"I Chitout |

@—‘[Storage I—"ICn.:mutunitI

Fig. Basic computer Operations

2. Storage: The process of saving data and instructions
permanently is known as storage. Data has to be fed into the
system before the actual processing starts. It is because the
processing speed of Central Processing Unit (CPU) is so fast that
the data has to be provided to CPU with the same speed. Therefore
the data is first stored in the storage unit for faster access and
processing. This storage unit or the primary storage of the
computer system is designed to do the above functionality. It
provides space for storing data and instructions.

The storage unit performs the following major functions:

« All data and instructions are stored here before and after
processing.
« Intermediate results of processing are also stored here.

3. Processing: The task of performing operations like arithmetic
and logical operations is called processing. The Central Processing
Unit (CPU) takes data and instructions from the storage unit and
makes all sorts of calculations based on the instructions given and
the type of data provided. It is then sent back to the storage unit.

4. Output: This is the process of producing results from the data for
getting useful information. Similarly the output produced by the
computer after processing must also be kept somewhere inside the
computer before being given to you in human readable form. Again
the output is also stored inside the computer for further processing.

5. Control: The manner how instructions are executed and the
above operations are performed. Controlling of all operations like
input, processing and output are performed by control unit. It takes
care of step by step processing of all operations inside the
computer.

14
9.1.1: FUNCTIONAL UNITS

In order to carry out the operations mentioned in the
previous section the computer allocates the task between its
various functional units. The computer system is divided into three
separate units for its operation. They are 1) arithmetic logical unit,
2) control unit, and 3) central processing unit.

Arithmetic Logical Unit (ALU)

After you enter data through the input device it is stored in
the primary storage unit. The actual processing of the data and
instruction are performed by Arithmetic Logical Unit. The major
operations performed by the ALU are addition, subtraction,
multiplication, division, logic and comparison. Data is transferred to
ALU from storage unit when required. After processing the output is
returned back to storage unit for further processing or getting
stored.

9.1.2:Control Unit (CU)

The next component of computer is the Control Unit, which
acts like the supervisor seeing that things are done in proper
fashion. The control unit determines the sequence in which
computer programs and instructions are executed. Things like
processing of programs stored in the main memory, interpretation
of the instructions and issuing of signals for other units of the
computer to execute them. It also acts as a switch board operator
when several users access the computer simultaneously. Thereby
it coordinates the activities of computer’s peripheral equipment as
they perform the input and output. Therefore it is the manager of all
operations mentioned in the previous section.

Central Processing Unit (CPU)

The ALU and the CU of a computer system are jointly known
as the central processing unit. You may call CPU as the brain of
any computer system. It is just like brain that takes all major
decisions, makes all sorts of calculations and directs different parts
of the computer functions by activating and controlling the
operations.

9.1.3: MEMORY SYSTEM IN A COMPUTER

There are two kinds of computer memory: primary and
secondary. Primary memory is accessible directly by the
processing unit. RAM is an example of primary memory. As soon
as the computer is switched off the contents of the primary memory
is lost. You can store and retrieve data much faster with primary

15

memory compared to secondary memory. Secondary memory such
as floppy disks, magnetic disk, etc., is located outside the
computer. Primary memory is more expensive than secondary
memory. Because of this the size of primary memory is less than
that of secondary memory. We will discuss about secondary
memory later on.

Computer memory is used to store two things: i) instructions
to execute a program and ii) data. When the computer is doing any
job, the data that have to be processed are stored in the primary
memory. This data may come from an input device like keyboard or
from a secondary storage device like a floppy disk.

As program or the set of instructions is kept in primary
memory, the computer is able to follow instantly the set of
instructions. For example, when you book ticket from railway
reservation counter, the computer has to follow the same steps:
take the request, check the availability of seats, calculate fare, wait
for money to be paid, store the reservation and get the ticket
printed out. The programme containing these steps is kept in
memory of the computer and is followed for each request.

But inside the computer, the steps followed are quite
different from what we see on the monitor or screen. In computer’s
memory both programs and data are stored in the binary form. You
have already been introduced with decimal number system, that is
the numbers 1 to 9 and 0. The binary system has only two values 0
and 1. These are called bits. As human beings we all understand
decimal system but the computer can only understand binary
system. It is because a large number of integrated circuits inside
the computer can be considered as switches, which can be made
ON, or OFF. If a switch is ON it is considered 1 and if it is OFF it is
0. A number of switches in different states will give you a message
like this: 110101....10. So the computer takes input in the form of O
and 1 and gives output in the form 0 and 1 only. Is it not absurd if
the computer gives outputs as 0's & 1's only? But you do not have
to worry about. Every number in binary system can be converted to
decimal system and vice versa; for example, 1010 meaning
decimal 10. Therefore it is the computer that takes information or
data in decimal form from you, convert it in to binary form, process
it producing output in binary form and again convert the output to
decimal form.

The primary memory as you know in the computer is in the
form of IC’s (Integrated Circuits). These circuits are called Random
Access Memory (RAM). Each of RAM’s locations stores one byte of
information. (One byte is equal to 8 bits). A bit is an acronym for
binary digit, which stands for one binary piece of information. This
can be either 0 or 1. You will know more about RAM later. The

16

Primary or internal storage section is made up of several small
storage locations (ICs) called cells. Each of these cells can store a
fixed number of bits called word length.

Each cell has a unique number assigned to it called the
address of the cell and it is used to identify the cells. The address
starts at 0 and goes up to (N-1). You should know that the memory
is like a large cabinet containing as many drawers as there are
addresses on memory. Each drawer contains a word and the
address is written on outside of the drawer.

Capacity of Primary Memory

You know that each cell of memory contains one character
or 1 byte of data. So the capacity is defined in terms of byte or
words. Thus 64 kilobyte (KB) memory is capable of storing 64 °
1024 = 32,768 bytes. (1 kilobyte is 1024 bytes). A memory size
ranges from few kilobytes in small systems to several thousand
kilobytes in large mainframe and super computer. In your personal
computer you will find memory capacity in the range of 64 KB, 4
MB, 8 MB and even 16 MB (MB = Million bytes).

The following terms related to memory of a computer are
discussed below:

1. Random Access Memory (RAM): The primary storage is
referred to as random access memory (RAM) because it is
possible to randomly select and use any location of the memory
directly store and retrieve data. It takes same time to any
address of the memory as the first address. It is also called
read/write memory. The storage of data and instructions inside
the primary storage is temporary. It disappears from RAM as
soon as the power to the computer is switched off. The
memories, which loose their content on failure of power supply,
are known as volatile memories .So now we can say that RAM
is volatile memory.

2. Read Only Memory (ROM): There is another memory in
computer, which is called Read Only Memory (ROM). Again it is
the ICs inside the PC that form the ROM. The storage of
program and data in the ROM is permanent. The ROM stores
some standard processing programs supplied by the
manufacturers to operate the personal computer. The ROM can
only be read by the CPU but it cannot be changed. The basic
input/output program is stored in the ROM that examines and
initializes various equipment attached to the PC when the switch
is made ON. The memories, which do not loose their content on
failure of power supply, are known as non-volatile memories.
ROM is non-volatile memory.

17

3. PROM There is another type of primary memory in computer,
which is called Programmable Read Only Memory (PROM). You
know that it is not possible to modify or erase programs stored
in ROM, but it is possible for you to store your program in
PROM chip. Once the programmes are written it cannot be
changed and remain intact even if power is switched off.
Therefore programs or instructions written in PROM or ROM
cannot be erased or changed.

4. EPROM: This stands for Erasable Programmable Read Only
Memory, which over come the problem of PROM & ROM.
EPROM chip can be programmed time and again by erasing the
information stored earlier in it. Information stored in EPROM
exposing the chip for some time ultraviolet light and it erases
chip is reprogrammed using a special programming facility.
When the EPROM is in use information can only be read.

5. Cache Memory: The speed of CPU is extremely high compared
to the access time of main memory. Therefore the performance
of CPU decreases due to the slow speed of main memory. To
decrease the mismatch in operating speed, a small memory
chip is attached between CPU and Main memory whose access
time is very close to the processing speed of CPU. It is called
CACHE memory. CACHE memories are accessed much faster
than conventional RAM. It is used to store programs or data
currently being executed or temporary data frequently used by
the CPU. So each memory makes main memory to be faster
and larger than it really is. It is also very expensive to have
bigger size of cache memory and its size is normally kept small.

6. Registers: The CPU processes data and instructions with high
speed, there is also movement of data between various units of
computer. It is necessary to transfer the processed data with
high speed. So the computer uses a number of special memory
units called registers. They are not part of the main memory but
they store data or information temporarily and pass it on as
directed by the control unit.

9.1.4:SECONDARY STORAGE

1. You are now clear that the operating speed of primary memory
or main memory should be as fast as possible to cope up with
the CPU speed. These high-speed storage devices are very
expensive and hence the cost per bit of storage is also very
high. Again the storage capacity of the main memory is also
very limited. Often it is necessary to store hundreds of millions
of bytes of data for the CPU to process. Therefore additional
memory is required in all the computer systems. This memory is
called auxiliary memory or secondary storage.

2.

18

In this type of memory the cost per bit of storage is low.
However, the operating speed is slower than that of the primary
storage. Huge volume of data are stored here on permanent
basis and transferred to the primary storage as and when
required. Most widely used secondary storage devices are
magnetic tapes and magnetic disk.

Magnetic Tape: Magnetic tapes are used for large computers
like mainframe computers where large volume of data is stored
for a longer time. In PC also you can use tapes in the form of
cassettes. The cost of storing data in tapes is inexpensive.
Tapes consist of magnetic materials that store data
permanently. It can be 12.5 mm to 25 mm wide plastic film-type
and 500 meter to 1200 meter long which is coated with
magnetic material. The deck is connected to the central
processor and information is fed into or read from the tape
through the processor. It similar to cassette tape recorder.

/___—f\ __ Reel Flange _

-
4

Sg

.
Ll

Side View Edge View

i

A

v

Fig: Magnetic Tape

Advantages of Magnetic Tape:

« Compact: A 10-inch diameter reel of tape is 2400 feet long
and is able to hold 800, 1600 or 6250 characters in each
inch of its length. The maximum capacity of such tape is 180
million characters. Thus data are stored much more
compactly on tape.

e« Economical: The cost of storing characters is very less as
compared to other storage devices.

« Fast: Copying of data is easier and fast.

e Long term Storage and Re-usability: Magnetic tapes can
be used for long term storage and a tape can be used
repeatedly with out loss of data.

Magnetic Disk: You might have seen the gramophone record,
which is circular like a disk and coated with magnetic material.
Magnetic disks used in computer are made on the same
principle. It rotates with very high speed inside the computer

19

drive. Data is stored on both the surface of the disk. Magnetic
disks are most popular for direct access storage device. Each
disk consists of a number of invisible concentric circles called
tracks. Information is recorded on tracks of a disk surface in the
form of tiny magnetic spots. The presence of a magnetic spot
represents one bit and its absence represents zero bit. The
information stored in a disk can be read many times without
affecting the stored data. So the reading operation is non-
destructive. But if you want to write a new data, then the existing
data is erased from the disk and new data is recorded.

3. Floppy Disk: It is similar to magnetic disk discussed above.
They are 5.25 inch or 3.5 inch in diameter. They come in single
or double density and recorded on one or both surface of the
diskette. The capacity of a 5.25-inch floppy is 1.2 mega bytes
whereas for 3.5 inch floppy it is 1.44 mega bytes. It is cheaper
than any other storage devices and is portable. The floppy is a
low cost device particularly suitable for personal computer
system. A floppy disk drive reads and writes data to a small,
circular piece of metal-coated plastic similar to audio cassette
tape.

DRIYE ELECTRONICS

ACTUATOR ARM ASEEMELY CIRCUNT BOARD

HEAD ARM
ASSEMBLY

STEPPER
MOTOR

DRIYE MOTOR?
SPINDLE ASSEMELT

Fig: Floppy Disk
2. Optical Disk:

With every new application and software there is greater
demand for memory capacity. It is the necessity to store large
volume of data that has led to the development of optical disk
storage medium. Optical disks can be divided into the following
categories:

20

1. Compact Disk/ Read Only Memory (CD-ROM): CD-ROM disks
are made of reflective metals. CD-ROM is written during the
process of manufacturing by high power laser beam. Here the
storage density is very high, storage cost is very low and access
time is relatively fast. Each disk is approximately 4 1/2 inches in
diameter and can hold over 600 MB of data. As the CD-ROM
can be read only we cannot write or make changes into the data
contained in it.

2. Write Once, Read Many (WORM): The inconvenience that we
can not write any thing in to a CD-ROM is avoided in WORM. A
WORM allows the user to write data permanently on to the disk.
Once the data is written it can never be erased without
physically damaging the disk. Here data can be recorded from
keyboard, video scanner, OCR equipment and other devices.
The advantage of WORM s that it can store vast amount of
data amounting to gigabytes (10° bytes). Any document in a
WORM can be accessed very fast, say less than 30 seconds.

3. Erasable Optical Disk: These are optical disks where data can
be written, erased and re-written. This also applies a laser beam
to write and re-write the data. These disks may be used as
alternatives to traditional disks. Erasable optical disks are based
on a technology known as magnetic optical (MO). To write a
data bit on to the erasable optical disk the MO drive's laser
beam heats a tiny, precisely defined point on the disk's surface
and magnetises it.

9.1.5: INPUT OUTPUT DEVICES

A computer is only useful when it is able to communicate
with the external environment. When you work with the computer
you feed your data and instructions through some devices to the
computer. These devices are called Input devices. Similarly
computer after processing, gives output through other devices
called output devices.

For a particular application one form of device is more
desirable compared to others. We will discuss various types of 1/0
devices that are used for different types of applications. They are
also known as peripheral devices because they surround the CPU
and make a communication between computer and the outer world.

1 Input Devices

Input devices are necessary to convert our information or
data in to a form which can be understood by the computer. A good
input device should provide timely, accurate and useful data to the
main memory of the computer for processing followings are the
most useful input devices.

21

1. Keyboard: - This is the standard input device attached to all
computers. The layout of keyboard is just like the traditional
typewriter of the type QWERTY. It also contains some extra
command keys and function keys. It contains a total of 101 to
104 keys. A typical keyboard used in a computer is shown in
Fig.. You have to press correct combination of keys to input
data. The computer can recognise the electrical signals
corresponding to the correct key combination and processing is
done accordingly.

Fig: Keyboard

2. Mouse: - Mouse is an input device shown in Fig. 2.7 that is
used with your personal computer. It rolls on a small ball and
has two or three buttons on the top. When you roll the mouse
across a flat surface the screen censors the mouse in the
direction of mouse movement. The cursor moves very fast with
mouse giving you more freedom to work in any direction. It is
easier and faster to move through a mouse.

¥

- ﬁ"'-

Fig: Mouse

3. Scanner: The keyboard can input only text through keys
provided in it. If we want to input a picture the keyboard cannot
do that. Scanner is an optical device that can input any
graphical matter and display it back. The common optical
scanner devices are Magnetic Ink Character Recognition
(MICR), Optical Mark Reader (OMR) and Optical Character
Reader (OCR).

22

e Magnetic Ink Character Recognition (MICR): - This is
widely used by banks to process large volumes of cheques
and drafts. Cheques are put inside the MICR. As they enter
the reading unit the cheques pass through the magnetic field
which causes the read head to recognise the character of
the cheques.

e Optical Mark Reader (OMR): This technique is used when
students have appeared in objective type tests and they had
to mark their answer by darkening a square or circular space
by pencil. These answer sheets are directly fed to a
computer for grading where OMR is used.

e Optical Character Recognition (OCR): - This technique
unites the direct reading of any printed character. Suppose
you have a set of hand written characters on a piece of
paper. You put it inside the scanner of the computer. This
pattern is compared with a site of patterns stored inside the
computer. Whichever pattern is matched is called a
character read. Patterns that cannot be identified are
rejected. OCRs are expensive though better the MICR.

Output Devices

1. Visual Display Unit: The most popular input/output device is
the Visual Display Unit (VDU). It is also called the monitor. A
Keyboard is used to input data and Monitor is used to display
the input data and to receive massages from the computer. A
monitor has its own box which is separated from the main
computer system and is connected to the computer by cable. In
some systems it is compact with the system unit. It can be color
or monochrome.

2. Terminals: It is a very popular interactive input-output unit. It
can be divided into two types: hard copy terminals and soft copy
terminals. A hard copy terminal provides a printout on paper
whereas soft copy terminals provide visual copy on monitor. A
terminal when connected to a CPU sends instructions directly to
the computer. Terminals are also classified as dumb terminals
or intelligent terminals depending upon the work situation.

3. Printer: It is an important output device which can be used to
get a printed copy of the processed text or result on paper.
There are different types of printers that are designed for
different types of applications. Depending on their speed and
approach of printing, printers are classified as impact and non-
impact printers. Impact printers use the familiar typewriter
approach of hammering a typeface against the paper and inked
ribbon. Dot-matrix printers are of this type. Non-impact printers

23

do not hit or impact a ribbon to print. They use electro-static
chemicals and ink-jet technologies. Laser printers and Ink-jet
printers are of this type. This type of printers can produce color
printing and elaborate graphics.

9.2 QUESTIONS:

=

NoabkowdN

Explain the components of computer organizations?
Define Computer? Explain basic Structure & Working of
Computers.

Write short note on Functional units of computer.
What is difference between RAM and ROM?

Explain in Brief about types of memory in computers.
What secondary storage in computer?

Explain types of Secondary storage in computers.
Explain structure & working of following:

a) Optical Disk

b) Magnetic Tape

Write short note on input devices.

Explain in brief about output devices of computers.

9.3 FURTHER READING:

« Computer Organization and Architecture by William
Stallings
% Structured Computer Organization by Tanenbaum

24

10

OPERATING SYSTEMS

Unit Structure

10.0 Objectives
10.1 Introduction

10.1.1: Types of OS
10.2 Windows Operating System
10.3 Linux Operating System
10.4 Some Linux Commands
10.5 Questions
10.6 Further Reading

10.0: OBJECTIVES

After completing this chapter, you will be able to:
+ Understand the Operating System and its structure.

+ Different types of Operating Systems, their applications, use
& history.

< Interact with LINUX OS using several commands

10.1 INTRODUCTION:

An operating system (OS) is a set of programs that
manage computer hardware resources and provide common
services for application software. The operating system is the most
important type of system software in a computer system. A user
cannot run an application program on the computer without an
operating system, unless the application program is self booting.
Time-sharing operating systems schedule tasks for efficient use of
the system and may also include accounting for cost allocation of
processor time, mass storage, printing, and other resources.

For hardware functions such as input and output
and memory allocation, the operating system acts as an
intermediary between application programs and the computer
hardware, although the application code is usually executed directly
by the hardware and will frequently call the OS or be interrupted by

25

it. Operating systems are found on almost any device that contains
a computer — fromcellular phones andvideo game
consoles to supercomputers and web servers.

Examples of popular modern operating systems
include Android, iOS, Linux, Mac OS X, all of which have their roots
in Unix, and Microsoft Windows.

10.1.1: Types of OS:

Real-time

A real-time operating systemis a multitasking operating
system that aims at executing real-time applications. Real-time
operating systems often use specialized scheduling algorithms so
that they can achieve a deterministic nature of behavior. The main
objective of real-time operating systems is their quick and
predictable response to events. They have an event-driven or time-
sharing design and often aspects of both. An event-driven system
switches between tasks based on their priorities or external events
while time-sharing operating systems switch tasks based on clock
interrupts.

Multi-user vs. Single-user

A multi-user operating system allows multiple users to
access a computer system concurrently. Time-sharing system can
be classified as multi-user systems as they enable a multiple user
access to a computer through the sharing of time. Single-user
operating systems, as opposed to a multi-user operating system,
are usable by a single user at a time. Being able to have multiple
accounts on a Windows operating system does not make it a multi-
user system. Rather, only the network administrator is the real user.
But for a Unix-like operating system, it is possible for two users to
login at a time and this capability of the OS makes it a multi-user
operating system.

Multi-tasking vs. Single-tasking

When only a single program is allowed to run at a time, the
system is grouped under a single-tasking system. However, when
the operating system allows the execution of multiple tasks at one
time, it is classified as a multi-tasking operating system. Multi-
tasking can be of two types: pre-emptive or co-operative. In pre-
emptive multitasking, the operating system slices the CPU time and
dedicates one slot to each of the programs. Unix-like operating
systems such as Solaris and Linux support pre-emptive
multitasking, as does AmigaOS. Cooperative multitasking is
achieved by relying on each process to give time to the other
processes in a defined manner. MS Windows prior to Windows
2000 and Mac OS prior to OS X used to support cooperative
multitasking.

26

Distributed

A distributed operating system manages a group of
independent computers and makes them appear to be a single
computer. The development of networked computers that could be
linked and communicate with each other gave rise to distributed
computing. Distributed computations are carried out on more than
one machine. When computers in a group work in cooperation, they
make a distributed system.

Embedded

Embedded operating systems are designed to be used in
embedded computer systems. They are designed to operate on
small machines like PDAs with less autonomy. They are able to
operate with a limited number of resources. They are very compact
and extremely efficient by design. Windows CE and Minix 3 are
some examples of embedded operating systems.

10.2 WINDOWS OPERATING SYSTEM:

Introduction to Windows 7:

Windows 7 is an operating system, developed by the global
giant Microsoft, which was released for public in October 2009.
An operating system can be understood as a software program
designed to facilitate the communication between computer
hardware and software. Without an operating system, a computer is
useless. Windows 7 is more simpler and easier to use compared
to its predecessor, Windows Vista. Windows Vista cannot be
considered as a very successful launch of Microsoft. Windows 7
has a 64-bit along with the availability of 32-bit support which
enables the users to use almost all the latest PCs. Be it desktops,
laptops, notebooks, or anything,

Windows 7 supports them all.

The purpose behind the launching of Windows 7:

Windows 7 was launched with many new and advanced
features beneficial to the users. The main aim was to cope up with
the limitations present in the previous versions that were highly
criticised. Windows Vista consisted of a big range of user friendly
features but unfortunately, the system failed due to ever increasing
complaints and negative reviews coming from the press. Contrary
to this, Windows 7 was developed with a focus on rectifying the
mistakes and providing noticeable upgrade to the product line of
Windows.

This product of Microsoft has launched six different editions.
They are listed as under:

27

o Starter

o Home Premium
. Professional

. Ultimate

. OEM

. Enterprise

System requirements for installing Windows 7:
The installation of Windows 7 operating system needs
certain bare minimum requirements.

. RAM (Random Access Memory) ranging from 1GB to 2GB is
enough here.

. Free Hard Disk space ranging from 16GB to 20GB is
needed.

. DirectX 9 graphics device with WDDM 1.0 or higher drive is
sufficient in both cases.

Various available options for the installation of Windows 7:

Microsoft has taken all the necessary steps to ensure that
this version is developed in a manner that it is accepted by all.
Hence, keeping this in mind, its installation process is made
extremely simple.

Users wanting to go for this product, have the option of just
upgrading directly from Windows Vista or even XP. Secondly they
can opt for a clean install option available to them. And for the fresh
users, they can directly buy new computers having this operating
system already installed.

Most Striking features of Windows 7:

The most attractive feature of Windows 7 can be its stability
and reliability. It's advanced graphical features, Aeropeek, and new
taskbar, which is covered by Windows Shell. This taskbar has
been given the name ‘Superbar’ by its developers. This new
Taskbar has been praised by the users so far. Although a bit
difficult to get a grasp of, these new features have proved to be a
hit among the users. The best improvement by Microsoft here is the
replacement of Quick Launch Toolbar with pinning applications.
This innovation has resulted in more easy to see icons. They are an
absolute delight to use.

Another interesting feature added here is that of Aero Snap.
This feature enables the user to maximize the window as soon as
the edge of the screen is dragged. Just a little move by the user,
and the window restores its previous state.

28

Users having the leisure of touch screen monitors, can also
enjoy another interesting feature of native touch.

The developers have taken full care to see that performance
of Windows 7 is much better compared to vista and this can be
proved with the introduction of innumerable new features including
the following: support for virtual hard disks, Handwriting recognition,
improved presentation on multi-core processors, improved boot
performance, DirectAccess and kernel improvements, etc.

Windows components like Internet Explorer and Windows
Media Player 12 are included in this product of Microsoft. The new
look that the developers have given to Windows Media Player here
is uncomparable. It is more stylish and sleek than ever, making it
more enjoyable.

For Game lovers also, windows 7 has proved to be better
than its previous edition, Windows Vista. Many popular games like
Internet Spades, Internet Backgammon, etc. which had
disappeared from Vista have been restored in Windows 7.

By the lauch of Windows 7, Microsoft has successfully tried to
regain its lost popularity to a considerable extent.

10.3 LINUX OPERATING SYSTEM:

Linux is, in simplest terms, an operating system. It is the
software on a computer that enables applications and the computer
operator to access the devices on the computer to perform desired
functions. The operating system (OS) relays instructions from an
application to, for instance, the computer's processor. The
processor performs the instructed task, then sends the results back
to the application via the operating system.

Explained in these terms, Linux is very similar to other
operating systems, such as Windows and OS X.

But something sets Linux apart from these operating
systems. The Linux operating system represented a $25 billion
ecosystem in 2008. Since its inception in 1991, Linux has grown to
become a force in computing, powering everything from the New
York Stock Exchange to mobile phones to supercomputers to
consumer devices.

As an open operating system, Linux is developed
collaboratively, meaning no one company is solely responsible for
its development or ongoing support. Companies participating in the

29

Linux economy share research and development costs with their
partners and competitors. This spreading of development burden
amongst individuals and companies has resulted in a large and
efficient ecosystem and unheralded software innovation.

Over 1,000 developers, from at least 100 different
companies, contribute to every kernel release. In the past two years
alone, over 3,200 developers from 200 companies have contributed
to the kernel--which is just one small piece of a Linux distribution.

This article will explore the various components of the Linux
operating system, how they are created and work together, the
communities of Linux, and Linux's incredible impact on the IT
ecosystem.

Where is Linux?

One of the most noted properties of Linux is where it can be
used. Windows and OS X are predominantly found on personal
computing devices such as desktop and laptop computers. Other
operating systems, such as Symbian, are found on small devices
such as phones and PDAs, while mainframes and supercomputers
found in major academic and corporate labs use specialized
operating systems such as AS/400 and the Cray OS.

Linux, which began its existence as a server OS and Has
become useful as a desktop OS, can also be used on all of these
devices. ,AUFrom wristwatches to supercomputers, Al is the
popular description of Linux' capabilities.

An abbreviated list of some of the popular electronic devices
Linux is used on today includes:

Garmin Nuvi 860,

Dell Inspiron Mini 9 and 880, and 5000 Google

Android
12 Dev Phone 1

30

Motorola MotoRokr
EM35 Phone

. Lenovo IdeaPad S9
HP Mini 1000

Sony Bravia

X02 Television

TiVo Volvo ' In-Car

Navigation System Yamaha Motif
Keyboard

Digital Video Recorder
These are just the most recent examples of Linux-based
devices available to consumers worldwide. This actual number of
items that use Linux numbers in the thousands. The Linux
Foundation is building a centralized database that will list all
currently offered Linux-based products, as well as archive those
devices that pioneered Linux-based electronics.

Linux Distributions:

Well-known Linux distributions include:

. Arch Linux, a minimalist distribution maintained by a
volunteer community and primarily based on binary
packages in the tar.gz and tar.xz format.

. Debian, a non-commercial distribution maintained by a
volunteer developer community with a strong commitment to
free software principles

31

Knoppix, the first Live CD distribution to run completely
from removable media without installation to a hard disk,
derived from Debian

Linux Mint Debian Edition (LMDE) is based directly
on Debian's testing distribution.

Ubuntu, a popular desktop and server distribution derived
from Debian, maintained by Canonical Ltd.

BackTrack, based off the Ubuntu Operating System. Used
for digital forensics and penetration testing.

Kubuntu, the KDE version of Ubuntu.

Linux Mint, a distribution based on and compatible with
Ubuntu.

Xubuntu is the Xfce version of Ubuntu.
Fedora, a community distribution sponsored by Red Hat

Red Hat Enterprise Linux, which is a derivative of Fedora,
maintained and commercially supported by Red Hat.

CentOS, a distribution derived from the same sources used
by Red Hat, maintained by a dedicated volunteer community
of developers with both 100% Red Hat-compatible versions
and an upgraded version that is not always 100% upstream
compatible

Oracle Enterprise Linux, which is a derivative of Red Hat
Enterprise Linux, maintained and commercially supported by
Oracle.

Mandriva, a Red Hat derivative popular in France and Brazil,
today maintained by the French company of the same name.

Manthiran Linux is a popular linux distro introduced to this
world by Quara Foundation.

PCLinuxQOS, a derivative of Mandriva, grew from a group of
packages into a community-spawned desktop distribution.

Gentoo, a distribution targeted at power users, known for
its FreeBSD Ports-like automated system for compiling
applications from source code

openSUSE a community distribution mainly sponsored
by Novell.

SUSE Linux Enterprise, derived from openSUSE,
maintained and commercially supported by Novell.

Slackware, one of the first Linux distributions, founded in
1993, and since then actively maintained by Patrick J.
Volkerding.

Damn Small Linux, "DSL" is a Biz-card Desktop OS

32
Advantages of Linux Operating System:
Low cost:

There is no need to spend time and huge amount money to
obtain licenses since Linux and much of it's software come with the
GNU General Public License. There is no need to worry about any
software's that you use in Linux.

Stability:

Linux has high stability compared with other operating
systems. There is no need to reboot the Linux system to maintain
performance levels. Rarely it freeze up or slow down. It has a
continuous up-times of hundreds of days or more.

Performance:
Linux provides high performance on various networks. It has
the ability to handle large numbers of users simultaneously.

Networking:

Linux provides a strong support for network functionality;
client and server systems can be easily set up on any computer
running Linux. It can perform tasks like network backup more faster
than other operating systems.

Flexibility:

Linux is very flexible. Linux can be used for high
performance server applications, desktop applications, and
embedded systems. You can install only the needed components
for a particular use. You can also restrict the use of specific
computers.

Compatibility:

It runs all common Unix software packages and can process
all common file formats.
Wider Choice:

There is a large number of Linux distributions which gives
you a wider choice. Each organization develop and support
different distribution. You can pick the one you like best; the core
function's are the same.

Fast and easy installation:

Linux distributions come with user-friendly installation.

33
Better use of hard disk:

Linux uses its resources well enough even when the hard disk is
almost full.

Multitasking:
Linux is a multitasking operating system. It can handle many
things at the same time.

Security:
Linux is one of the most secure operating systems. File
ownership and permissions make linux more secure.

Open source:

Linux is an Open source operating systems. You can easily
get the source code for linux and edit it to develop your personal
operating system.

Today, Linux is widely used for both basic home and office
uses. It is the main operating system used for high performance
business and in web servers. Linux has made a high impact in this
world.

Comparison of Windows and Linux:

Both Linux and Windows are operating systems. An
operating system is the most important program that runs on a
computer. Every general-purpose computer must have an
operating system to run other programs. Operating systems
perform basic tasks, such as recognizing input from the keyboard,
sending output to the display screen, keeping track of files and
directories on the disk, and controlling peripheral devices such as
disk drives and printers.

1. Reduces the risk of carpal tunnel syndrome

When linux is properly installed, there no longer a need to
use the mouse. Chances of you using a mouse is close to zero.

2. Use the extra cash for rewards

Linux is 100% free while Windows Vista Ultimate
costs $398.99 at the time of writing. Companies that pay a licensing
annually could have used the money for other things like buying an
additional server to reduce the load or even give a bigger bonus to
its loyal employees.

34
3. Formats are free, freedom is preserved

Linux file formats can be accessed in a variety of ways
because they are free. Windows on the other hand makes you lock
your own data in secret formats that can only be accessed with
tools leased to you at the vendor’s price. “What we will get with
Microsoft is a three-year lease on a health record we need to keep
for 100 years”

4, Zero risk in violating license agreements

Linux is open source so you are unlikely to violate any
license agreement. All the software is happily yours. With MS
Windows you likely already violate all kinds of licenses and you
could be pronounced a computer pirate if only a smart lawyer was
after you. The worldwide PC software piracy rate for 2004 is at
35%. Which means that 3 out of 10 people are likely to get into real
trouble.

5. Transparent vs Proprietary

MS Windows is based on DOS, Linux is based on UNIX. MS
Windows Graphical User Interface (GUI) is based on Microsoft-own
marketing-driven specifications. Linux GUI is based on industry-
standard network-transparent X-Windows.

6. Better network, processing capabilities

Linux beats Windows hands down on network features, as a
development platform, in data processing capabilities, and as a
scientific workstation. MS Windows desktop has a more polished
appearance, simple general business applications, and many more
games for kids (less intellectual games compared to linux’s).

7. Customizable

Linux is customizable in a way that Windows is not. For
example,NASIlite is a version of Linux that runs off a single floppy
disk and converts an old computer into a file server. This ultra small
edition of Linux is capable of networking, file sharing and being a
web server.

8. Flexibility

Windows must boot from a primary partition. Linux can boot
from either a primary partition or a logical partition inside an
extended partition. Windows must boot from the first hard disk.
Linux can boot from any hard disk in the computer.

35

9. Mobility

Windows allows programs to store user information (files
and settings) anywhere. This makes it impossibly hard to backup
user data files and settings and to switch to a new computer. In
contrast, Linux stores all user data in the home directory making it
much easier to migrate from an old computer to a new one. If home
directories are segregated in their own partition, you can even
upgrade from one version of Linux to another without having to
migrate user data and settings.

10. Proven Security

Why isn’t Linux affected by viruses? Simply because its code
has been open source for more than a decade, tested by people all
around the world, and not by a single development team like in the
case of Windows. This leads to a lightning fast finding and fixing for
exploitable holes in Linux. So that proves Linux as having an
extremely enhanced security and lesser chances of exploits
compared to Windows.

10.4 SOME LINUX COMMANDS:

mkdir - make directories

Usage

mkdir [OPTION] DIRECTORY

Options

Create the DIRECTORY (ies), if they do not already exist.

Mandatory arguments to long options are mandatory for short
options too.

-m, mode=MODE set permission mode (as in chmod), not
FWXIwxrwx - umask

-p, parents no error if existing, make parent directories as needed
-v, verbose print a message for each created directory

-help display this help and exit

-version output version information and exit

cd - change directories

Use cd to change directories. Type cd followed by the name of a
directory to access that directory.Keep in mind that you are always
in a directory and can navigate to directories hierarchically above or
below.

36

mv- change the name of a directory

Type mv followed by the current name of a directory and the new
name of the directory.

Ex: mv testdir newnamedir
pwd - print working directory

will show you the full path to the directory you are currently in. This
is very handy to use, especially when performing some of the
other commands on this page

rmdir - Remove an existing directory

rm -r

Removes directories and files within the directories recursively.
chown - change file owner and group

Usage

chown [OPTION] OWNER[:[GROUP]] FILE

chown [OPTION] :GROUP FILE

chown [OPTION] --reference=RFILE FILE

Options

Change the owner and/or group of each FILE to OWNER and/or
GROUP. With --reference, change the owner and group of each
FILE to those of RFILE.

-c, changes like verbose but report only when a change is made

-dereference affect the referent of each symbolic link, rather than
the symbolic link itself

-h, no-dereference affect each symbolic link instead of any
referenced file (useful only on systemsthat can change the
ownership of a symlink)

-from=CURRENT_OWNER:CURRENT_GROUP

change the owner and/or group of each file only if its current

owner and/or group match those specified here. Either may be
omitted, in which case a match is not required for the omitted
attribute.

-no-preserve-root do not treat /' specially (the default)
-preserve-root fail to operate recursively on /'

37

-f, -silent, -quiet suppress most error messages

-reference=RFILE use RFILE's owner and group rather than the
specifying OWNER:GROUP values

-R, -recursive operate on files and directories recursively
-v, -verbose output a diagnostic for every file processed
The following options modify how a hierarchy is traversed

when the -R option is also specified. If more than one is specified,
only the final one takes effect.

-H if acommand line argument is a symbolic link to a directory,
traverse it

-L traverse every symbolic link to a directory encountered
-P do not traverse any symbolic links (default)

chmod - change file access permissions

Usage

chmod [-r] permissions filenames

r Change the permission on files that are in the subdirectories of
the directory that you are currently in permission Specifies the
rights that are being granted. Below is the different rights that you
can grant in an alpha numeric format.flenames File or directory
that you are associating the rights with Permissions

u - User who owns the file.

g - Group that owns the file.

o0 - Other.

a - All.

r - Read the file.

w - Write or edit the file.

X - Execute or run the file as a program.
Numeric Permissions:

CHMOD can also to attributed by using Numeric Permissions:
400 read by owner

040 read by group

004 read by anybody (other)

200 write by owner

020 write by group

002 write by anybody

38

100 execute by owner
010 execute by group
001 execute by anybody

Is - Short listing of directory contents

-a list hidden files
-d list the name of the current directory
-F show directories with a trailing '/'
executable files with a trailing '
-g show group ownership of file in long listing
- print the inode number of each file
- long listing giving details about files and directories
-R list all subdirectories encountered
-t sort by time modified instead of name

cp - Copy files
cp myfile yourfile

Copy the files "myfile" to the file "yourfile" in the current working
directory. This command will create the file "yourfile" if it doesn't
exist. It will normally overwrite it without warning if it exists.

cp -i myfile yourfile

With the "-i" option, if the file "yourfile" exists, you will be prompted
before it is overwritten.

cp -i /data/myfile

Copy the file "/data/myfile" to the current working directory and
name it "myfile". Prompt before overwriting the file.

cp -dpr srcdir destdir

Copy all files from the directory "srcdir" to the directory "destdir"
preserving links (-poption), file attributes (-p option), and copy
recursively (-r option). With these options, a directory and all it
contents can be copied to another dir

In - Creates a symbolic link to afile.

In -s test symlink

39

Creates a symbolic link named symlink that points to the file test
Typing "Is -i test symlink" will show the two files are different with
different inodes. Typing "Is -I test symlink" will show that symlink
points to the file test.

locate - A fast database driven file locator.
slocate -u

This command builds the slocate database. It will take several
minutes to complete this command.This command must be used
before searching for files, however cron runs this command
periodically on most systems.locate whereis Lists all files whose
names contain the string "whereis". directory.

more - Allows file contents or piped output to be sent to the screen
one page at a time

less - Opposite of the more command

cat - Sends file contents to standard output. This is a way to list the
contents of short files to the screen. It works well with piping.

whereis - Report all known instances of a command
wc - Print byte, word, and line counts
bg

bg jobs Places the current job (or, by using the alternative form, the
specified jobs) in the background, suspending its execution so that
a new user prompt appears immediately. Use the jobs command to
discover the identities of background jobs.

cal month year - Prints a calendar for the specified month of the
specified year.

cat files - Prints the contents of the specified files.
clear - Clears the terminal screen.

cmp filel file2 - Compares two files, reporting all discrepancies.
Similar to the diff command, though the output format differs.

diff filel file2 - Compares two files, reporting all discrepancies.
Similar to the cmp command, though the output format differs.

dmesg - Prints the messages resulting from the most recent
system boot.

fg

40

fg jobs - Brings the current job (or the specified jobs) to the
foreground.

file files - Determines and prints a description of the type of each
specified file.

find path -name pattern -print

Searches the specified path for files with names matching the
specified pattern (usually enclosed in single quotes) and prints their
names. The findcommand has many other arguments and
functions; see the online documentation.

finger users - Prints descriptions of the specified users.
free - Displays the amount of used and free system memory.
ftp hostname

Opens an FTP connection to the specified host, allowing files to be
transferred. The FTP program provides subcommands for
accomplishing file transfers; see the online documentation.

head files - Prints the first several lines of each specified file.

ispell files - Checks the spelling of the contents of the specified
files.

Kill process_ids
kill - signal process_ids
kill -1

Kills the specified processes, sends the specified processes the
specified signal (given as a number or name), or prints a list of
available signals.

killall program
killall - signal program

Kills all processes that are instances of the specified program or
sends the specified signal to all processes that are instances of the
specified program.

mail - Launches a simple mail client that permits sending and
receiving email messages.

man title

man section title - Prints the specified man page.

41

ping host - Sends an echo request via TCP/IP to the specified
host. A response confirms that the host is operational.

reboot - Reboots the system (requires root privileges).
shutdown minutes
shutdown -r minutes

Shuts down the system after the specified number of minutes
elapses (requires root privileges). The -r option causes the system
to be rebooted once it has shut down.

sleep time - Causes the command interpreter to pause for the
specified number of seconds.

sort files - Sorts the specified files. The command has many useful
arguments; see the online documentation.

split file - Splits a file into several smaller files. The command has
many arguments; see the online documentation

sync - Completes all pending input/output operations
(requires root privileges).

telnet host - Opens a login session on the specified host.

top - Prints a display of system processes that's continually
updated until the user presses the g key.

traceroute host - Uses echo requests to determine and print a
network path to the host.

uptime - Prints the system uptime.
w - Prints the current system users.

wall - Prints a message to each user except those who've disabled
message reception. Type Ctrl-D to end the message

10.5 QUESTIONS:

1. What is Operating System? State & Explain types of O.S.
2. Write Short Note on
a) Windows 7 O.S. b) Linux O.S.
Write short note on Linux Distributions.
State the advantages of Linux Operating System.
5. Compare windows with Linux.

Hw

42

6. Explain use and execution of following Linux Commands
a) mkdir
b) cd
c) mv
d) pwd
e) rmdir
f) chmod
9) Is
h) cp
i) cat
j) fip
k) Kill
[) sleep
m) wall

10.6 FURTHER READING:

+ Operating System Concepts by Abraham Silberschatz,
Greg Gagne and Peter B. Galvin

R/
°

Modern Operating Systems by Tanenbaum

Computer System Architecture by M Morris Mano |,
Prentice Hall of India, 2001

Computer Architecture and Organization by John P
Hayes, Tata McGraw Hill

5

S

*
0.0

