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1.0 OBJECTIVES

In this chapter a student has to learn the

. Concept of adjoint of a matrix.
o Inverse of a matrix.
. Rank of a matrix and methods finding these.

1.1 INTRODUCTION

At higher secondary level, we have studied the definition of a matrix,
operations on the matrices, types of matrices inverse of a matrix etc.

In this chapter, we are studying adjoint method of finding the inverse of a
sguare matrix and also the rank of a matrix.

1.2 DEFINITIONS

1) Definitions:- A system of mxn numbers arranged in the form of
an ordered set of m horizontal lines called rows & n vertical lines called
columns is called an mxn matrix.

The matrix of order mxn is written as



all aiZ a|3 aij in
L aml am2 am3 amj amn Jnxn
Note
1) Matrices are generally denoted by capital letters.

i) The elements are generally denoted by corresponding small letters.
Types of Matrices:
1) Rectangular matrix :-

Any mxn Matrix where m = n is called rectangular matrix.

Fore.g
2 3 4
1 2 3,,

2) Column Matrix :

It is @ matrix in which there is only one column.

3x1

3) Row Matrix :

Itis a matrix in which there is only one row.
x=[5 7 9],

4) Square Matrix :

It is a matrix in which number of rows equals the number of
columns.

i.eits orderisn xn.



e.g.

{ j|
=
2x2

5) Diagonal Matrix:

It is a square matrix in which all non-diagonal elements are zero.
e.g.

A=

o o N
o - O
o O O

3x3

6) Scalar Matrix:

It is a square diagonal matrix in which all diagonal elements are equal.

e.g.
5 00
A=|0 5 0
0 0 5

3x3

7) Unit Matrix:

It is a scalar matrix with diagonal elements as unity.

e.g.
1 00
A=0 1 0
0 01

3x3
8) Upper Triangular Matrix:

It is a square matrix in which all the elements below the principle diagonal
are zero.



e.g.
1 30
A=/0 0 1
0 0 5

3x3
9) Lower Triangular Matrix:

It is a square matrix in which all the elements above the principle
diagonal are zero.

10) Transpose of Matrix:

It is a matrix obtained by interchanging rows into columns or columns into
rows.

{135}
A=
3792x3
1 3

A" =Transpose of A=|3 7
5 9

3x2
11) Symmetric Matrix:

If for a square matrix A, A = A" then A is symmetric

>

I
O W e
P AW
© = o0

12) Skew Symmeric Matrix :

If for a square matrix A, A = A" then it is skew -symmetric matrix.



0 5
A=-5 0
-7 -3 0

Note : For a skew Symmetric matrix, diagonal elements are zero.
Determinant of a Matrix:

Let A be a square matrix then

| A|=determinant of A i.edet A=|A

If (i) then |A = O0matrix A is called as non-singular and
If (i) then |A|=0, matrix A is singular.

Note : for non-singular matrix A-1 exists.
a) Minor of an element :
Consider a square matrix A of order n

Let
A=lay]

The matrix is also can be written as

a; &, 3 — — — 4y,

Ay 8y Ay — T T 8y,
A=|- - - - - - -

_anl dy, g — — — ann_

Minor of an element a; is a determinant of order (nd) by deleting the
elements of the matrix A, which are in 6th row and 5th column of A.

E.g. Consider,
all a12 a13
A = aZl a22 a23
aSl a32 a33

M ;; = Minor of an element a ,;



a a
A= |: 22 23:|
4y Ay

M - a21 a22
12 =
a31 a33

3 2] 1 2 13
Mu=l, 6] M2l | M=y 4

_[5 8] 2 8 2 5
M, = 4 6_'M12_ 0 6 Mz = 0 4

(b) Cofactor of an element :-

If A= [aij] is a square matrix of order n and a; denotes cofactor of the
element a;;.

C, = (-1)"" . M, Where M, is minor ofa,.

2 C2

A, =The cofactor of A, =(-1)**
b3 C3

a, G

B, = The cofactor of b, =(-1)""
a3 C3

a
C, = The cofactor of b, =(-1)"" R




E.g. Consider,
1 3 4
A=|0 2 1
3 7 6
141 120 1
Cy (_1) M11 Cp (_l) 3 6‘
- (Y= ey
- ([ = ey
= % (@2-7) = () % (9
= % (12-7) = () x (9
=5 =3

(C) Cofactor Matrix :-

A matrix C = [Cij] where C; denotes cofactor of the element a;.
Of a matrix A of order nxn, is called a cofactor matrix.

In above matrix A, cofactor matrix is

5 3 -6
C=|10 -6 9
-3 -1 2

Al Bl Cl
~C=|A* B> C?
A B* C®

1 2 4 -3
Similarly for a matrix, A = {3 9} the cofactor matrix is c= { 5 1 }

(d) Adjoint of Matrix :-

If A is any square matrix then transpose of its cofactor matrix is called
Adjoint of A.



Thus in the notations used,

Adjoint of A=C"

Al B! C!
= Adj A=| A> B? C?
A B C®

Adjoint of a matrix A is denoted as Adj.A

Thus if,
1 3 4 5 -10 3
A=|0 2 1|thanAdj. A=|3 -6 -1
3 7 6 -6 9 2
Note :

b d -b
it A=|2 than Adj. A=
c dj,, - a

(d) Inverse of a square Matrix:-

Two non-singular square matrices of order n A and B are said to be
inverse of each other if,

AB=BA=I, where | is an identity matrix of order n.
Inverse of A is denoted as A™ and read as A inverse.

Thus
AA=ATAZ]

Inverse of a matrix can also be calculated by the Formula.

Atz 1 Adj.A where |A| denotes determinant of A.

A

Note:- From this relation it is clear that A™ exist if and only if |A[=0 i.e
A is non singular matrix.

1.3 ILLUSTRATIVE EXAMPLES
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Example 1: Find the inverse of the matrix by finding its adjoint

Solution: We have,

|A=2 (3-4)-1(9-2)+3 (6-1)
=—2-7+15

|Al=6

|A|=0

A exists

Transpose of matrix A=Al

3 1
Al=1 1
2 3

We find co-factors of the elements of Al (Row-wise)

CF.(2)=-1 CF.(3)= 3, CF.(1)=-1
CF.(1)=-7, CF.()= 38 CF.(2)=-5
CF.(3)=5. CF.2)=-3 CF.(3)=-1
103 4
adj (A){? 3 5
5 3 -1
a3 4
A'lzﬁ adj(A)=% 7 3 5
5 3 -

Example 2: Find the inverse of matrix A by Adjoint method, if

>

Il
w R o
R NP
R oW N
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Solution: Consider

e

1)-1(-8)+2(-
—O+8 10
= -2

1 2
2 3
11

\-/(AJHO

Co factor of the elements of A are as follows

Cn=GﬂMf i:A
Cp @ﬂ”é i:s
q3(4f3;i=4
Cﬂ-(—n“3i i:l
Ca = (1) i‘:-e
Cy (—9“32 j:3
gﬁpgﬂizk4
(o (—Q“?S j:z
Cas (—Q“?S j:—l
Thus,
-1 8 -5
Cofactor of matrixC=|1 -6 3
12 1

And Adjoint of A= C!
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-1 1 -1 . -1 1 -1
=8 —6 2 :>A—1=—E 8 —6 2
5 3 1 5 3 1

Note:- A Rectangular matrix does not process inverse.

Properties of Inverse of Matrix:-

1) The inverse of a matrix is unique i.e

i) The inverse of the transpose of a matrix is the transpose of inverse
ie (AT)—l _ (A—l)T

iii) If A & B are two non-singular matrices of the same order
(AB)*=B'A™"

This property is called reversal law.
Definition:-Orthogonal matrix.:-

If a square matrix it satisfies the relation AA"™ = Ithen the matrix A
is called an orthogonal matrix. &

AT=A"
Example 3:

Cosd CosO

show that A=|
Sind Cos0

} is orthogonal matrix.

Solution:
To show that A is orthogonal i.e To show that AA" =1

_ | Cos@ Sing
" | =Sin@ Cos@

AT = Cos® Sing
" | =Sin@ Cos@

AAT = {Cose Sin@}{Cose —Sina}

-Singd Coséd || Sind Cosé

_ Cos?0 +Sin’0 —Co0s6Sind +SinACosé
—-Sin#Cosf + CosbSing Sin?6 + Cos?6



12

£

.. A'is an orthogonal matrix.

Check Your Progress:

Q. 1) Find the inverse of the following matrices using Adjoint method, if
they exist.

_ ‘1 2‘ . ‘2 3JJ ... |cos@ —sin@
i) , i) : i) | . ;
2 -2 4 - sind cosé@
1 3 -2 cosd -sind 0 1 -2 3
iv) -3 0 -5, V) [sind cos@ 0, vi)| 2 3 -1
2 50 0 0 1 -3 1 2
1 1 1
vip|1 2 -3
2 -1 3
cos@ —sing ! _tang . tanz
QI MA= 4o cosol 27| o el "
tan — 1 —tan— 1
2 2
prove that A= B.C™
-4 -3 -3
QA4HIfA=|1 0 1|, provethat Adj. A=A
4 4 3
1 2 1
Q.5 IfFA=|0 1 1|, verifyif(Adj.A)!= (Adj.A})
1112
1 2 -1
Q.6) Find the inverse of A=|0 1 -1|, hence find inverse of
2 2 3
-3
A= -3
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1.4 RANK OF A MATRIX

a) Minor of a matrix

Let A be any given matrix of order mxn. The determinant of any
submatrix of a square order is called minor of the matrix A.

We observe that, if ‘r’ denotes the order of a minor of a matrix of
order mxn then 1<r<mifm<nand 1<r <nif n<m.

e.g. Let
1 3 -1
A=|4 0 1 7
8 5 4 -3

The determinants

13 1] [3 -1 4] [1 -1 4
401,017,417,
8 5 4 3| |8 4 -3
: Ho 7\ ol

Are some examples of minors of A.
b) Definition — Rank of a matrix:

A number ‘r’ is called rank of a matrix of order mxn if there is
almost one minor of the matrix which is of order r whose value is non-zero

and all the minors of order greater than ‘r’ will be zero.

e.q.(i) Let

>

I
w N e
3 I )
~N =N
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Consider e.g. Let

10

2 4

A =
- ’

0 2
‘:4, A, = ‘ 1‘=—8 etc.

10 2
A, =|2 4 1|=1(23)+2(-2)=19%0
35 7

.. Rank of A=3
1 1 2
@@ A=11 2 3
0 -1 -1
Here,
1 1 2
A=|1 2 3 :1(1)—1(—1)+2(—1)=O
0 -1 -1
1 1
A, = =120
1 2

Thus minor of order 3 is zero and atleast one minor of order 2 is non-zero
.. Rank of A = 2.

Some results:
Q) Rank of null matrix is always zero.
(i)  Rank of any non-zero matrix is always greater than or equal to 1.

(iii)  If A'is any mxn non-zero matrix then Rank of A is always equal to
rank of A.

(iv)  Rank of transpose of matrix A is always equal to rank of A.

(v) Rank of product of two matrices cannot exceed the rank of both of
the matrices.

(vi) Rank of a matrix remains unleasted by elementary
transformations.

Elementary Transformations:

Following changes made in the elements of any matrix are called
elementary transactions.

() Interchanging any two rows (or columns) .

(i) Multiplying all the elements of any row (or column) by a non-zero
real number.
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(iii)  Adding non-zero scalar multitudes of all the elements of any row

(or columns) into the corresponding elements of any another row (or
column).

Definition:- Equivalent Matrix:

Two matrices A & B are said to be equivalent if one can be
obtained from the other by a sequence of elementary transformations. Two
equivalent matrices have the same order & the same rank. It can be
denoted by
[it can be read as A equivalent to B]

Example 4: Determine the rank of the matrix.

1 2 3
A=|1 4 2
2 6 5
Solution:
1 2 3
Given A={1 4 2
2 6 5

R,=R,-R & R,=R,-2R,

1 2 3
0 2 -1
0 2 -1

Here two column are Identical . hence 3" order minor of A vanished
nd . 1 3
Hence 2" order minor 0 -1 =-1#0

Se(A)=2

Hence the rank of the given matrix is 2.

1.5 CANONICAL FORM OR NORMAL FORM
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. . I, o| .
If a matrix A of order mxn is reduced to the form {“ }usmg a
0 0

sequence of elementary transformations then it called canonical or normal
form. Ir denotes identity matrix of order ‘r’ .

Note:-

If any given matrix of order mxn can be reduced to the canonical
form which includes an identity matrix of order ‘r’ then the matrix is of
rank ‘r’.

e.g. (1) Consider

Example 5: Determine rank of the matrix. A if

2 1 -3 -6
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R,-R,, R;+R,

1 0 -32 -64
~/0 1 33 66
0 0 28 -56
1
R I
3708
1 0 -32 -64
~/0 1 33 66
00 1 -2
R,+ 32R,, R,- 33R,
1.0 0 0
~/0 1 0 O
0010
~[1; o]
.. Rank of A=3

Example 6: Determine the rank of matrix
1 7

A=|2 7
3

o AN

10
Solution:

1 2 3
A=2 4 7
3 6 10

R,-2R,, R, 3R,

12 3
~|2 4 7
3 6 10
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{
o O -
o O N
o - O

C,-2C,
i .

~ 1
- 0_

10
00
00
C,eC,
10
01
00

_ 0

~ 0
L 0_

- [Iz O]

.. Rank of A=2

Example 7: Determine the rank of matrix A if

1 -1 -2 —4
12 3 1 4
131 3 =2
6 3 0 -7

A

Solution:

1 -1 -2 —4
12 3 14
131 3 =2
6 3 0 -7
R,-2R,, R,-3R,, R, —6R,,
1 -1 -2 -4
05 3 7
0 4 9 10
0 9 12 17

Rz_R3

A



19

}

4
-3
R,+R,, R,—4R,, R, -9R,

10

-1 -2
—6
9

1

0 1

0 4

0 9 12 17

-7
-3

1 0 -8
—6

01

0 0 33 22
0 0 66 44

R,—2R,

—7
-3

1 0 -8
—6

01

0 0 33 22

~~
o
<
N ~ ™ i —
[ rod © X on R e ——
3_320C20000
o © — ™ O+2 ™
[ [ O O +H O O O +H O
(el +
=
o - o - O s o do0o o O o+d o o
o w0
— o — O © + 4o oo |, O o o
= <
o @) !
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I, O
0 0
.. Rank of A=3

Check Your Progress:-

Reduce the following to normal form and hence find the ranks of the
matrices.

_ 2 3 4 -3 4
) 1 2 3 .
)} i) 4 3 1 i) |5 -5 7
3 12
- 1 2 4 3 1 4
TEY 1 2 1 0
2 4 3 2 2 1 -3 -6 3 2 1 2
iv) v) |3 -3 1 1 vi)2 -1 2 5
3213
1 1 1 2 5 6 3 2
6 8 7 5
1 3 -1 -3
2 6 -2 6 10 3 4 5 6 7
-3 3 -3 -3 -3 4 5 6 7 8
vii) 1 -2 4 3 5 viii) |5 6 7 8 9
2 0 4 6 10 10 11 12 13 14
1 0 2 3 5 15 16 17 18 19

1.6 NORMAL FORM PAQ

If A is any mxn matrix ‘r’ then there exist non singular matrices P and Q
such that,

I’O—PA
0 0| Q

We observe that, the matrix A can be expressed as

Where Im In are the identity matrices of order m and n respectively.
Applying the elementary transformations on this equation. A in L.H.S.
can be reduced to normal form. The equation can be transformal into the
equations.
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Note that, the row operations can be performed simultaneously on L.H.S.
and prefactor (i.e. Im in equation (i)) and column operations can be
performed simultaneously on L.H.S. and post factor in R.H.S. i.e. [(In in

eqn ()]

Examples 8: Find the non-singular matrices P and Q such that PAQ is in

normal and hence find the rank of A.

2 -1 3
i) A=|3 4 -1
1 5 -4

Solution: Consider

A=13 Al

(2 -1 3] 1 00 1 00
3 4 -1/=|/0 1 0|A|0 1 O
1 5 -4/ |00 1] [0 01
R, < R,

1 5 4] [0 0 1 1 00

3 4 -1=/0 1 0]A|0 1 O
2 -1 3] |1 00 [001
C,-5C, C,+4C,

1 0 0 0 01 1 —4
3 -11 -11}=(0 1 0JA|0 1 O
2 -11 -11] |1 0 0] |0 O
Rz_Rs

1 0 0 0 01 1 5 4
1 0 01=|-110/A|0

2 -11 -11| |1 0 O 0

R,- R, R,— 2R,

1 0 0 0 0 1 15 -4

0 0 0|=-11 -1{A[0 1 O
0 -11 11 |1 0 2] [0 0 1

C,+C,
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1 0 O 0 0 1 1 5 -1
o 0 0|11 -1 A0 1 1
0 -11 0 1 0 -2 0 0 1

1
R_a
T
1 00 0 0 1 1 -5 -1
000/=|-11 -1|Al0 1 1
010 -2 0 0 1
W0 Y%,
R, R,
100 0 0 1 1 -5 -1
010:—%10%1A01 1
0 1 1 -1 0 0 1
Thus
0 0 1
-1
= | — 2 =
P=|%, 0 2| A 0
1 1 -1
1 -5 -1
Q= |0 1 1 A Q=1
0 0 1

P and Q are non-singular matrices
Also Rank of A=2

2 1 -3 -6
i) A=/3 -3 1
1 1 1
Solutions:
Consider
1 000
1 00
0100
A=|0 1 0O|A
0 010
0 01
0 001



c,-C,, C,-C,, C,—-2C,

|

R, <R,

«— O O

o +H O

o O

0 0 O
-6 -2 4
-5 -10

-1

1
3
2

-1

1

R,—-3R,, R,—2R,
R,—6R,,
0 0 28 56
C, -2C,

|

-1 0
0
-2

1

0
1
0

')

0 0 0 1
=6 1 9
1 0

0
0 0 28 O
-5

0

0

0
-1

1

0 1
0 O
0 O

C,-5C,

|

oo § «
<+ 9 « o
T 4 o o
- © o o
<
- o 9
o +d o
o 9 -
I —
Il
o o o
o & o
o o 7
- o o

, Ryx (—1)

28

R, x
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1 -1 4 0
1000 o 0 1 -
_13 -
0010‘44%8/8 1 o
R 00 0 1
R, &R,
1 -1 4 0
1000 1 0 1 5 o
0100 2 1Al o 1
0010
/4 / 00 0 1
1 -1 4 0
o 0 1
01 50
10 2 Al o
3 9
44%848 00 0 1
P = ,|P|%

1 0 2
Ha o8 Vs

1 -1 4 0
90 = 01 -5 0 |Q|
~jo o0 1
0O 0 0 1
. P&Q are non singular.
Also,
Rank of A = 3.
Check Your Progress:

A) Find the non-singular matrices P and Q such that PAQ is in normal
form and hence find rank of matrix A.

10 -2 12 32 3 1 1
i) 2 3 -4 i) |2 3 5 1] i1 1 1
3 3 -6 13 45 1 -1 1
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1 7
A I PR
iv) -3 4 7 9| (v)
15 27 39 51
5 4 6 -5
6 12 18 24
1.7 LET US SUM UP
. Definition of matrix & its types.
. Using Adjoint method to find the A™ by
using formula A™ = ﬁade
. Rank of the matrix using row & column transformation
. Using canonical & normal form to find Rank of matrix.

1.8 UNIT END EXERCISE

1 2 3
1) Find the inverse of matrix A={4 5 6| ifexists.
7 8 9

1 1 -1
i) Find Adjoint of Matrix A=|0 2 1
2 -1 1
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0 2 1
) ) .. i 1 01
1)) Find the inverse of A by adjoint method if A= 01 2
2 310
(1 2 3
iv) Find Rank of matrix A=|4 5 6
|7 8 9
[Cos® -Sind 0
V) Prove that the matrix A=| Sind Cosé 0| is orthogonal
0 0 1
Also find A™.
01 -3 -1
] . 1 0 1
Vi) Reduce the matrix A= 31 0 to the normal form &@and
1 1 -2

find its rank.

vii)  Find the non singular matrix p and o . such that p 4 o is the normal

1 1 1
formwhen A=|1 -1 -1
3 1 1

Also find the rank of matrix B

1 1 -1 -1 -2 -1
X=/2 -3 4|&Y=|6 12 6
3 -2 3 5 10 5

viii) Under what condition the rank of the matrix will be 3!

p

I
R NN
o - b
NN
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1 1 -1 -1 -2 -1
ix) If X=|12 -3 4|&Y=|6 12 6
3 2 3 5 10 5
Then show that p(xy) = p(yx)where p denotes Rank.

8 3 6 1

X) Find the rank of matrix A= 1642

7 9 10 3

15 12 16 4

*khkkkk

2

LINEAR ALGEBRIC EQUATIONS

UNIT STRUCTURE

2.1  Objectives

2.2 Introduction

2.3 Canonical or echelon form of matrix
2.4  Linear Algebraic Equations

2.5 Let Us Sum Up

2.6 Unit End Exercise

2.1 OBJECTIVES

After going through this chapter you will be able to

- Find the rank of Matrix.

- Find solution for linear equations.

- Type of linear equations.

- Find solution for Homogeneous equations.

- Find solution of non-Homogeneous equations.

2.2 INTRODUCTION

In X1 we have solved linear equations by using method of
reduction also by rule. Here we are going to find solution of homogeneous



28

and non-homogeneous both with different case. Using matrix we can
discuss consistency of system of equation.

2.3 CACONICAL OR ECHOLON FORM OF MATRIX

Let A be a given matrix. Then the canonical or Echelon form of A is a
matrix in which

Q) One or more elements in each of first r-rows are non-zero and
these first r-rows form an upper triangular matrix.

(i) The elements in the remaining rows are zero.

Note :

1) The number of non-zero rows in Echelon form is the rank of the
matrix.

2) To reduce the matrix to Echelon form only row transformations are
to be applied.
Solved Examples :-

Example 1: Reduce the matrix to Echelon and find its rank.

2 3 -1 41
-1 -1 2 4
A=
3 1 3 -2
6 3 0 -7
Solution:
(2 3 -1 -1
-1 -1 2 -4
A=
3 1 3 -2
| 6 0 -7
R <R,
(1 -1 -2 -4
2 -1 -1
A=
3 3 2
| 6 -7
R,=>R,-2R
R,=R,-3R

R,=R,—-6R
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1 -1 2 -4
A |05 3 7

0 4 9 10

0 9 12 17
R3:>R3—g R,
R4:>R4—§ R,

1 -1 -2 4]
A |05 3 7

0 0 335 22/5

0 0 335 22/5]
R,=R,— R,

1 -1 -2 4]
A |05 3 7

0 0 335 22/5

0 0 0 0]

Rank of A= e(A)
= No. of non-zero rows
=3

Check Your Progress:
1) Find the rank of the following matrices by reducing to Echelon form.

1 2 3

i) A=|2 4 7 Ans: 2
13 6 10
12 -1 3
34 0 -1

i) A=
-1 0 -2 7
12 3 -1
3 4 1 1
2 4 3 6

iii) A= Ans:4
-1 -2 6 4
1 -1 2 3
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2.4 LINEAR ALGEBRIC EQUATIONS

1) Consider a set of equations :
ax+by+cz=d,
a,Xx+b,y+c,z=d,

ax+hby+c,z=d,

The equation can be written in the matrix form as :

ai bl Cl X 1
) bz C, y = dz
a’3 b3 CB z 3
A X D
e AX=D
Now we join matrices A and D
& b ¢ :d
[A:D]=|a, b, ¢, : d,
a3 b3 CS d3

It is called as Augment matrix

We reduce (A.D.) to Echelon form and thereby find the ranks of A and
(A:D)

1) If p(A) = p(AD)then the system is inconsistent i.e. it has no solution.

2) If p(AD) = p(A)then the system is consistent and if

(i) o(AD) = p(A) =Number of unknowns then the system is
consistent and has unique solution.

(i) p(AD) = p(A) < Number of unknowns and has infinitely many
solutions.

Non- Homogeneous equation:-
System of simultaneous equation in the matrix form is

AX=D.....()
Pre-multiplying both sides of 1 by A™ we set



31

SLATAX =ATD
~LIX=A"B
~X=A"B

which is required solution of the given non-homogeneous equation.

Homogeneous linear equation:-

Consider the system of simultaneous equations in the matrix form.
AX =D

If all elements of D are zero

i.e

then the system of equation is known as homogeneous system of
equations.

In this case coefficient matrix A and the augmented matrix [A,O]
are the same. So The rank is same. It follow that the system has solution

X;s Xy, Xg.......X, =0, which is called a trivial solution.

Example 2: Solve the following system of equations

2%, —3X, + %, =0
X, +2X, —3%, =0
4%, —X, —2%, =0
Solution: The system is written as

AX =0

2 3 1 X, 0

1 2 -3 X, | =10

4 -1 -2 X, 0

Hence the coefficient and augmented matrix are the same
We consider

2 -3 1]
A=[1 2 -3
4 -1 2]
2 -3 1]
A=[1 2 -3
4 -1 -2
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1 2 -3
A=|2 -3 1
4 -1 -2
R,=R,-2R &R, =R, —4R,
1 2 -3
=0 -7 7
0 -9 -10

R, =R, x%

1 2 -3

=0 1 -1

0 -9 -10

R, = R,+9R, &R, = R 2R,
1 0 -1

=10 1 -1

0 0 -19

R, =R, x‘%

1 0 -1

=0 1 -1

0 0 1
R,=R+R &R =R +R;
1 00

=0 1 0

0 01

Hence Rank of A is 3

S AL(A) =3,
The coefficient matrix is non-singular

Therefore there exist a trivial solution

X1:X2:X3:0

Example 3: 51ve the following system of equations

X, +3X, —2X%, =0
2X, — X, +4%, =0
X, —11x, +14x, =0
Solution: The given equations can be written as

AX =0
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1 3 2] [x 0
2 -1 4| [x| =10
1 11 14| |x 0

Here the coefficient & augmented matrix are the same

1 3 =2
A=|2 -1 4

1 -11 14
R,=>R,-2R &R, = R,—R
1 3 -2
0O -7 8
0 -14 16
R, = R, - 2R,
1 3 -2
0 -7 8
0 0 0
Hererank of Ais 2 i.e

((A)=2
So the system has infinite non-trivial solutions.

1 3 -2 X, 0
0 -7 -8 X,| =10
0 0 O X 0
X, +3X, —2%, =0
—7X, —8%, =0
X, =8X%,

8

X2 :?XS

Let X, —8x,=4
8

S X :71

.~.x1+3(§zj—2z=o

;.x1+%,1—2/1=o

24
X =2A-—A1
& 7

10
——=
X 7



34

Hence xlz—gi X, =$/1 and X, =1

_10,
X, 87
X = =1
? 7
X3 1

Hence infinite solution as deferred upon value of A

Example 4: Discuss the consistency of

2X+3y—-4z1=-2
X—y+3z=4
3X+2y—-z=-5

Solution: In the matrix form

2 3 -4 X -2
1 -1 3 y| = |4
3 2 - Z -5

Consider an Agumental matrix

2 3 -4 : 2
[A:D]=|1 -1 3 : 4
3 2 -1 : -5

1
R2—>R2—§ R,

3
R3—>R3—§ R,

2 3 4 : 2




.. p(AD) = p(A)
.. The system is inconsistent and it has no solution.

Example 5: Discuss the consistency of

3X+y+2z=3
2X—-3y—z=-3
X+2y+z2=4

Solution: In the matrix form,

3 1 27[x] [3

2 -3 -1||y| =|-3

1 2 1||z| |4
A X = D

Now we join matrices A and D

Consider
1 3
[A:D] =12 -3 -1 : -3
2 4

We reduce to Echelon form

R—>R,
2 1 : 4
[A:D] =12 -3 -1 : -3
1 2 : 3
R, >R,-2R
R, >R, -3R,
1 2 1 : 4
[AD] =|2 -7 -3 : -11
0O 5 -1 : -9

&%&—g&
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12 1 : 4
[AD] = |0 7 3 : -11 ... ©

00%:—%

This is in Echelon form

. p (AD)=p (A)= Number of unknowns

.~ System is consist and has unique solution.

Step (2) : To find the solution we proceed as follows. At the end of the
row transformation the value of z is calculated then values of y and the
value of x in the last.

The matrix in e.g. (1) in Echelon form can be written as

1 2 17[x 4
0 -7 -3||y|=|-11
0 0 87||z -8/7

Expanding by R,

8
72=-%

soz=-1
. expanding by R,
—7y—-3z=-11
—7y-3(-)=-11

—7y+3=-11

+1y=+14

y=2

expanding by R,

X+2y+z=4

X+4-1=4

Sox=1

o x=lLy=2z=-1

Example 6: Examine for consistency and solve

oX+3y+7z=4
3x+26y+2z=9
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7X+2y+10z=5
Solution:

Step (1) : In the matrix form

5 3 7 X 4
3 26 2 y| =15
7 2 10 y4 6
A X =D
Consider
5 3 7 : 4 X 4
[A:D]=|3 26 2 : 9| |y| =|5
7 2 10 : 5 y4 6
1
R1_>ER1
1 35 7/5 : 4/5
[A:D]=|3 26 2 : 9
7 2 10 : 5
R,—> R,-3R
R,—> R,-7TR,

1 35 7/5 : 4/5
[A:D]=|0 121/5 -11/5 : 33/5
0 -11/5 15 : -3/5

1
R,—»> R,+—R
3 37T 2

3 7 -4
L% K%
[A:D]=|0 12% —1% : 3%
0 O 0 .0
p (AD)=2
p(A)zZ
p(AD) = p(A)=2<3=Number of unknowns

The system is consistent and has infinitely many solutions.
Step (2) :- To find the solution we proceed as follows:

Let
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z=K.......[k = parameter|
. Byexpanding R,
121/5y-11/5z =33/5
11y-z=3
z+3
T
put z=k
k+3
BT
By exapanding R,

x+3y+ U z=4

7 16k
X =

11 11

Check Your Progress:

Solve the system of equations:

i) 2X + X, +2X, + X, =6

6%, —6X, +6x, +12X, =36

4%, 43X, +3%, —3x, =-1

2%, +2X, — X, + X, =10

Ans : consistent

i) =2, X,=1 x,=-1 X,=3
2X + X, + X+ X, =2

X =X, + X=X, =2

X +2X%, =X +X, =1

6X, +2X, + X +X, =5

Ans : Infinitely many solutions,

iii) X, =K, X, =3-4Kk, x3:2—§k, x4:gk—3
2 2

3 X +X+X =4

2%, +5X, —2X, =3

X, +7X, = 7%, =5

Ans : Inconsistent
iv) X, —X, =% =0
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X +2X,—% =0
2X + X, +3%, =0
Ans: Trivial Solution.

V) X +2X, +3%, =0

2X, +4X,+ 7%, =0

3%, +6Xx, +10x, =0

Ans : Definitely many solution

« A
1
-1
X = |=1
? 2
X, 0

2.5 LET US SUM UP

In this chapter we have learn
Using row echelon from finding Rank of matrix.
Representing linear equation m x n in to argumented matrix.

Consistency of matrix.

33

€

X/ R/
o L X4

R/
L X4

Solution of Homogeneous equations.

e

S

Solution of non homogeneous equations.

2.6 UNIT END EXERCISE

1) Reduce the following matrix in Echolon form & find its Rank.

(1 3 6 -1
1 45 1
) A= Ans : Rank =2
15 4 3
! -1 3
1 2 1
i) A= Ans : Rank=3
-1 1 2
1 2 1
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1 2 3

iii) A={2 1 0 Ans : Rank =2
0 1 2
1 1 1

iv) A=|1 -1 -1| Ans:Rank=2
3 1 1

2) Solve the following system of equations.
1) X +X,+X =3, X+2X,+3x,=4, X, +4X,+9x, =6

Ans:- x=2,y=12z=0.
i) 2% -X,-%,=0, X -X,=0, 2X,+X, -3X,=0
1
Ans:- X =X, =X;=A..... A|1].

iii) 5x, - 3X, - 7%, +x, =10
-X, +2X, +6X; - 3X, = -3

X, + X, +4%,-5x, =0

iii) 2%, +3X, - 2%, =0
3% -X,+3%,=0
X, +5X, - %, =0.
iv) X -4X, - X, =3
33X, + X, -2%, =7
2%, - 3X, + X, = 10.
V) X, -4X, +7X;, =8
3, +8X, -2X, =6
7X, - 8X, +26x, =31

*khkkkikk
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3

LINEAR DEPENDANCE AND
INDEPENDANCE

OF VECTORS

UNIT STRUCTURE

3.1 Objectives

3.2 Introduction

3.3 Definitions

34 The Inner Product

3.5 Eigen Values and Eigen Vectors
3.6 Summary

3.7 Unit End Exercise

3.1 Objectives

After going through this chapter you will able to

X Find linearly independent & linearly dependent vector.
X Inner product of two vector

X Find characteristic equation of matrix

X Find the of characteristic equation i.e

X Find the corresponding .Eigen vector to Eigen value.

3.2 Introduction

In this chapter we are going to discuss linearly dependent &
independent also. Inner two vector using the characteristic equation of
matrix. We are going to evaluate .Eigen value & Eigen.vector of matrix A.

Vector :- An set of n elements written as X =[X,,%,, X5, X;,eevvveneees X ] is
called a vector of n-dimensions.

Note : Any two or column matrix is called as a vector and numbers are
called as scalars.

3.3 Definitions

Linearly Independent Vector
Let

Let X, Xy, eevnveennnns X, be n vectors of some order
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Let CX +C, X, + v +c,X, =0

Wherec,, C,, ...... are scalars.

If(i)c,=C, =i =c, =0 then

Xy Xoy voerens X, are linearly independent

and (ii) if not all c; are zero then X;,X,,.......... X,

are linearly dependent

IF X, %0 X, are linearly dependent then a relation exists
between them which can be found out

Solved examples:-

Example 1: Examine for linear dependence
x=(124), x,=(3 7 10)
Solution: We have,

1
X\ =2 X,=|7
4 10
Let ¢ x, +¢,x=0
1 3] [0
ie. ¢|2|+c¢c,| 7 |=|0
4 10| |0
¢ + 3 |
ie. |2c, + Tc, |=
4c, + 10c, |

o O O

o ¢ +3c,=0
2c,+7¢,=0
4c,+10c, =0
Consider first two equations in matrix form.
1 3¢ 0
NN
A X =0
|A|=7-6
[Al=1
S |A[=0
. System has zero solution.
le. ¢ =¢,=0
X,, X, are linearly independent
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Example 2: Examine for linear dependence.
x=(123), %,=(3 21 ,x=(1 6-5)
Solution:

Step (1) We have

1 3 1
X\ =[2]| , X,=|-2|,%X;=|-6
3 1 -5
Let c,X +C,X, +C;X, =0
1 3 1 0
c,=|2| + ¢c,=|-2| +¢,|6|=|0
3 1 5] |0

c, +3c, +C, 0

~|2¢, —2c, —6¢, |=|0

3c, +c, -5c, 0
c,+3c,+¢, =0

2c,—2¢,—6¢,=0
3c,+¢,—-5¢, =0
Step (ii) In matrix form,
1 3 1 C, 0
2 -2 -6 c,| =10
3 1 -5 C, 0
A X =0
Consider
1 3 1 :0
[A0]=|2 -3 -6 : O
31 -5:0
R, >R,-2R
R, >R, —3R,
1 3 1 :0
[A:0]=|0 -8 -8 : 0
0O -8 -8 :0
R, >R,— R,
R, = —% R,
1 31:0
[A0]=l0 1 1 : 0
000 :0

e (A0)=2
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e (A)=2
e (A:0)=e (A)=2< Number of unknowns
. system has non-zero solution
i.e. ¢, C,, C, are non zero
. X;,X,, X, are linearly dependent

Step (iii):
To find relation between
X, Xz, X3
Let
c,=k
By expanding R,
c,+ C,=0
C, =-C,
c, =—k

By expanding R,
c,+3c,+¢c,=0

c,— 3k+ k=0

c, =2k

S CX X, + CX =0

o 2kx, — kx, + kx, =0

. 2X,— X,+ X, =0 isarelation.

Check your progress:
1) Show that the vectors x, =(11 1), X,(1 2, 3),x,( 2, 3, 8)

are linearly independent
2) Are the following vectors linearly dependent? If so find the
relation
i) =12 4), x,=(2,-13),x,=(0,12),x,=( =37, 2)
Ans : Dependent 9x, —12x, +5x, —5x, =0

(i) x=(2-132),x=(1342), ,=(3-5 22)

Ans :- Dependent, 2x, —x, — %, =0
i) x=111 3),x=(1234), ,=(2 349)

Ans : Independent.

3.4 THE INNER PRODUCT
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If X =(X,%..... X)) and Y = (Y, Y,.ooenyy)
then<X,Y> denotes inner product
< XY >=XY, XY, + X Vs F o +X,Y, is in inner product of X and Y.

Let V be a vector space and X,Y V then<X,Y> it said to be an inner
product if it satisfies following properties.

)} <X,Y>=0

i) <X Y> =<Y, X>

iii) <X, Y+Z> = <X, Y> + <X,Z>

iv) <X,a Y>= a<X,Y>where o isscalar.
V) <X,Y>=0if and only if X=0.

Example 3: Show that < X,Y >=X Y, +2X,Y, +4X,Y,
Satisfies all properties of inner product

Solution: < X,Y >= XY, +2X,Y, +4X,Y,

1) <X,Y >=XY, +2XY, +4X,Y,
= (X1)2 + 2(X2)2 +4(X3)2 >0
<X,Y>>0

<X,Y >=0(%)* +2(X,)* +4(x;)* =0
X, =0,x,=0,0rx, =0

S< X, X>0x=0
i) < XY >=XY, +2X,Y, +4%,Y,
=YX +2Y,X, +4Yy.X,
=<Y,X >
iii) < XY +Z>=x(Y, +2,)+ 2%, (Y, +Z,) +4X,(Y; + Z,)

=X Y, + X7, +2X,Y, +2X,Z, + 4X; Y, +4X,Z,
=X Y, +2%,Y, + A%, Y, + X Z, +2X,Z, + 4X,Z,
=< X,Y>+< X,Z>

iv) <X,aY > =x(ay,)+2X,(ay,)+4x%(ay,)
=aXy, +a2x,y, +aldxy,
= a(X Y, +2%,Y, +4%Y;)
=a<XYy>

Here all properties are satisfied
< X,Y > is an inner product.

Check Your Progress:

Prove all the properties of an inner product for the following:-
<X,Y >=16xy, —25X%,Y,

<X,Y >:8X1y1+xzy2 —XY;
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< X,Y >=3XY, — X, Y, —4X;Y,

b
< f,g>=¢ f(t).g(t).dt

3.5 Eigen Values And Eigen Vectors

Definition:-

Let A be a given square matrix.
Then there exists a scalar A and non-zero vector X such that

Our aim is to find and x for given matrix A using equation (1)

A is called as eigen value, latent roots of a matrix value, characteristic
value or root of a matrix A and x is called as eigen vector or characteristic
vector etc.

X is a column matrix

Method of finding 4 and x :-

We have,
AX=A4AX
AX-2 IX=0..... [x =X, | = unit matrix]|
A S — (2)

|A=21|=0.c(3)

This equation is called the characteristic equation of
First we solve equation (3) to find eigen values or roots. Then we solve
equation (2) to find Eigen vectors.

Let
a b ¢ X
A=la, b, c,| andx=|Xx,
a‘3 b3 C3 XS
equation (2) i.e. (A-4 I)x=0 becomes
a b ¢ 1 00 X, 0
a b, c,|-4/0 1 0 X, |=|0
a, b, c 0 01 X 0
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a-4 b G X 0
ie| a, b,-1 ¢ X, |=10]—>(2)
a, b, C—-4]]X 0
and equation (3) i.e. |A-1 X|=0is
a-4 b G
a, b-4 ¢ [=0->()

Note :
1) Equation (2) is called as matrix equation of Ain 4
2) Equation (3) is called as characteristic equation of Ain A

3) Usually given matrix A is of order 3X3 . Therefore it will have 3
eigen values and for every eigen value there will be corresponding eigen
vector which is a column matrix of order 3X1. There are 3 such column
matrices.

4) Eigen vectors are linearly independent.

5) Method of finding eigen values is same for any given matrix A.

Method of finding eigen vectors is slightly different and we study 3 types
of such problems.

Type (1) : When all eigen values are distinct and matrix A may be
symmetric or non- symmetric.

Type (I1) : When eigen values are repeated and A is non-symmetric

Type (111) : When eigen values are repeated and A is symmetric.

Solved examples :-
Type (1) : All roots are non- repeated.
Example 4: Find eigen values and given vectors for

2 -2 3
A=11 1 1

1 3 -1

Solution: Step (1) : Charactristic equation of Ain 4 is
|A-i I |= 0
2-4 -2 3

iee|1 1-4 1 |=0

1 3 -1-4

. A°—(sum of diagonal elements of A) 1%+
(sum of minors of diagonal elements of A) A -|A|=0
LJA=2 (-1-3)+2 (-1-1)+3 (3-)



48

= -8-4+6
IA|=-6

Characteristic equation is given by

A =2)7 +(—4—5+4) A -(—6)=O
S A%=21% 51 +6=0
sin ce sum of coefficient =0
. (4 -1) is afactor.
Synthetic division:

1)1 -2 -5 6
1 -1 -6
[ 1 -1 -6 0

~ (4-1) (A7-21-6)=0

" (1 -1) (/1 -3) . (l +2) =0
SoA=1,-2,3

.. The roots are non- repeated

Step (ii) :- Now we find eigen vectors
Matrix equations is given by

(A-21)X =0
222 2 3 1[x] [o
ie| 1 14 1 ||x,|=|0
1 3 -1-||x,| |0

Case (i):—When A =1, matrix eq" becomes

1 -2 3|[x| |0
1 0 1]|x,[=|0
1 3 -2||x, 0

Solving first two rows by Cramer’s rule.
We have,

X, —2X, +3%, =0

X +X, +X%X =0

AR TR X
T2 2 =22
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X =1
1
Case (ii) :- When 4, =-2
Matrix equation is given by
4 -2 31[%x 110
1 3 1]|x,|]|0
1 3 1||x,]10
. Xl X _X3
a1 1 14
Xl _ X2 _ X3

1 -1 14

Case (iii) : When A ;=43 matrix equation is given by
-1 -2 3 ||x 0
1 -2 1]|x,|=|0

4 2 78
4 4 4
1
X X X
S A O A
1 1 4 .

Type (11) :- Repeated eigen values and A is non- symmetric.
Example 5: Find eigen values and eigen vectors for
2 11

A=|2 3 2
3 3 4
Solution:
Step (1) :- Characteristic equation of A in 4 is

[A—ﬂ I] =0

ie. 1°94° +(6+5+4) A-7=0

A%91%+4151-7=0

since sum of co-efficients =0
- (4-1) isafactor

synthetic division
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11 -9 15 -7
1 -8 7
1 -8 7 0
A8 +T
= (4-7) (4-1)
S A%91%24151-7=0
(A-1) (A-1) (4-7)=0
A=7,11
Here two roots are repeated. First we find eigen vectors for non-repeated

root.
Step Il :- Matrix equation of Ain 4 is

(A-21)X =0
2-1 1 1 X,
2 3-1 2 X, | =0
3 3 A4-1] X, 0

Case (i) - For A =7
Matrix equation is

5 1 17[x 0
2 -4 2|[x,| =10
3 3 -3||x, 0

x
N
x

Case (i) :- Let 1 =1
Matrix equation is
11 17][x, 0

2 2 2|[x,|=|0
33 3|[x,| |0

By cramers’s rule we get

X X% _ X
0O 0 O
0
ie. |0
0

But by definition we want non-zero x»
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So we proceed as follows

Expanding by R,

X +X,+% =0
Assume any element to be zero say x1 and give any conventional value
say 1 to x2 and find x3

Case (iii) :- Let x=1
Again consider
X, +X,+X;=0
Let x,=0, x;,=1

X, =-1
0
X,=|1
-1

Type (iii) :- A is symmetric and eigen values are repeated
Example 6: Find eigen values and eigen vectors for .

6 -2 2
A=-2 3 -1
2 -1 3
Solution:
Step :- Characteristic equations of Ain A4 is
[A-21]=0
6-14 -2 2
-2 3-4 -1 =0
2 -1 3-4
[A]=32

ie A°-124%+(8+14+14) 1-32=0
. A°-124%+36 1-32=0
(4 -2) is a factor
Synthetic division :-
2 1 -12 36 -32
2 =20 32
1 -10 16 O
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A?-102+6

= (1-8)(1-2)

v A°—12224+364-32=0

(2-2)(2-2)(2-8)=0
. A=822

Step (ii) :- Matrix equation is
6-4 -2 2 X
-2 3-1 -1 X
2 -1 3-1

Case (i) :-For 4 =8
Matrix equation is given by

-2 -2 2 Xy 0
-2 5 -1||x,| =10
2 1 -5||x, 0
X1 _ % _ % By cramers rule
12 6 6
_ % _ X
2 -1 1
2
X, =|-1
1

Case (ii) :-Let A4 =2

Matrix equation is given by
4 -2 2||x 0
-2 1 -1||x,| =|0
2 -1 1] |Xx 0

Expanding R,

4, —2X, +2%, =0

Let x, =0, x,=1

Xy =1

0
X, =1
1

Case (iii) :- Let

A =2

. Alis symetric
-~ Xy, X, , %, are orthogonal
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I
Let, X, =| m

n
" Xy, X, are orthogonal
X5, X, =0

X,, X, are orthogonal

X, Xy =0
Sool+m+n=0...... 2
solving (1) and (2) by cramer's rule
I -m n
2 2 2
I m n
1 -1
1
Xy =1
-1

Check your progress:

1) Find eigen values and eigen vectors for

2 -8 -12
i) A=|1 4 4
0 0 1

Ans :- Eigen values are 0,1,2

4 4
X=|-1] X,=] 0|, X;={-1
0 -1
3 -1 1
(i) A=-1 5 -1
1 -1 3
Ans Eigen values are 2,3 and 6
-1
X, =0 X, = X, =|—-2
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-2 2 -3
(iii) A= 2 1 -6

1 -2 0
Ans : Eigen values are 5, -3,-3

1 -2 3

X = 2 X,=| 1| X;=|0

-1 1
3.6 SUMMARY
In this chapter we have learn
X Linearly dependent & independent vector.
X Inner product of two vector i.e same as dot product 7 its properties.
X Characteristics equation & its root by using

A-21|=0

X2 Eigen vector which is corresponding to Eigen value which we get
from |[A-41|=0

3.7 UNIT END EXERCISE

1) Is the system of vector x, =(2,2,1)",x, =(1,3,1)" linear
by dependent?
2) Show that the vectors (1,2,3) (2,20) form a linearly

independent set.

3) Show that the following vector are linearly dependent
& find the relation between them

X =@-11),x,=(2,11),% =(3,0,2)

4) Prove the properties of an inner product.
< X,Y >=3xY, +4X,Y,.
< X,Y >=9xY, —3X,Y, +4X,Y,

5) Find Eigen value and Eigen vector for the following
matrix.
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A

CAYLEY - HAMILTON THEORY

UNIT STRUCTURE

4.1  Objective

4.2 Introduction

4.3  Cayley — Hamilton Theorem
4.4  Similarity of Matrix

4.5 Characteristics Polynomial
46  Minimal Polynomial

4.7  Complex Matrices

4.8 Let Us Sum Up

4.9  Unit End Exercise

4.1 OBJECTIVE

After going through this chapter you will able to
Find by using Cayley Hamilton Theorem.

33

€

R/
A X4

Application of Cayley- Hamilton Theorem.

X/
o

Find diagonal matrix on similar matrix.

K/
L X4

Characteristic Polynomial & Minimal Polynomial of matrix A.

R/
L X4

Derogatory & non-derogatory matrix.

X/
o

Complex matrix like Hermitian, Skew-Hermitian unitary matrix.

4.2 INTRODUCTION

In previous chapter we learn about Eigen values & Eigen Vector. How
here we are going to discuss Cayley Hamilton Theory & its application
also we had study only Real matrix. We introduce here complex matrix
with type of complex matrix also minimal polynomial.

4.3 CAYLEY - HAMILTON THEOREM

Statement: Every square matrix satisfies its own characteristic equation.
If the characteristic Equation for the n™ order square matrix A is

[A— Al|=(-1)"[ 2" +a A" +a,A".......+a, |then
(-1)" (A" +a, A +a,A" ... +a ] )=0
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Example 1:

Show that the given matrix A satisfies its characteristic equation.

2 1
A= 10 1
11

N O B

Solution:
The characteristic equation of the matrix A is |[A—1|=0

2-2 1 1
0 1-2 0 |=0
1 1 2-2
~(2-2)[(1-2)(2-2)-0]-1(0)+1(0—(1-2))=0
(2-4)[2-34+ 47 |+1(-1+4)=0

S A—B6A+242—22+322-2*-1+1=0
S =A%+5°—-71+3=0
S A-B12+721-3=0

By Cayley Hamilton theorem,

A —BAZ +TA=31=0..ccoiireeieneeeeeeee, (1)

Now, we have

211721 1] [5 4 4
A*=10 1 0[0 1 0|=0 1 O
11211 2] |4 45
2 1 1[5 4 4] [14 13 13
A=010(0 1 0[=/0 1 0
11 2|4 4 5] [13 13 14
A -5A2 4 TA-3l =
14 13 13] [5 4 4] [211] [1 00
|0 1 0|5/0 1 0[+7]0 1 0]-3[0 1 0
13 13 14| |4 4 5] [112] 001
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[14 13 13] 5 4 4 211
=0 1 0(5(0 1 0|+7/0 1 0|-3
13 13 14 4 4 5 112

14 13 13] [25 20 20 14 7 7] [3 00
=0 1 0(-{0 5 0|+ 0 7 0]-0
13 13 14| |20 20 25 ¢ 7 14] |0

28 20 201 [28 20 20
-0 8 0|-|0 8 0
20 20 28] |20 20 28

o O -
o - O
= O O

Il
o O O
o O O
o O O

=0
S AP-B5A+7A-31 =0

Thus the matrix A satisfies its characteristic equation.

Example 2 :

Calculate A’ by using Cayley Hamilton theorem.

3 6
Where A =
1 2

Solution :

The characteristic equation of A is
|A—AH=0

3-14 6

=0
1 2-2

(3—/1) (2—2)— 6=0
6—-24-31+1*-6=0
s A% =51=0
By Cayley Hamilton theorem,

A’ -5A=0
i.e. A>=5A
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Now to calculate

A" = A’ A’ = A 5A=5A°
=5A". A% = 25A°

=25A°. A =125A"
=125A% A’ =125(5A).(5A)
=3125A% =3125(5A)
=15625A

- 3 6
A7 =15625
12

_[46875 93750
115625 31250

. The value of A’ = 46875 93750
o 15625 31250

Example 3:

By using Cayley Hamilton theorem find A™

1 -1 1
A=|-1 1

1 2 1
Solution:

The characteristics equation of A is

|A-21=0|

-2 -1 1

-1 1-2 2 |=0
1 2 1-2

(1-4)[1-24+A* -4 ]+1[A1-1-2]+1[-2+ 1-1]=0
A2 —21-3+31+24°-2*+1-3-3+1=0
~2%+317+31-9=0

A°—312-31+9=0

By Cayley Hamilton theorem
A’ —3A° —-3A+91 =0



60
Multiply by A™
s ARAT_3AAT_3AAT+9IAT =0A™
s AP—3A-31+9A1 =0
A‘lzé [3A+3I-A"] L (1)

1 -1 1)1 11 3 00
A=-1 1 2||-1 1 2|=(0 6 3
1 2 1)1 2 1 0 3 6

1 -1 1] [1 0 0] [3 00
3A+31-A=3/-1 1 2[+3/]0 1 0|-|0 6 3
1 2 1] |0 0 1] |0 3 6
3 -3 3] [300][300
3A+3|A2=336+030063}
'3 6 3|00 3][0 36
3 -3 3]
=[-3 0
3 3 0]
Al =5[3A+3| -~ ]
9
3 -3 3
I
9_3 3 0
1 -1 1
001
3
1 1 0
1 -1
at=il1 o
3
1 1

Check your progress:

1) Find the characteristic polynomial of the matrix.

3 1 1
A=|-1 5 -1]| Verify Cayley-Hamilton theorem for this matrix.
1 -1 3
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Hence find A™*

L 7 -2 -3
Ans: A* = 0 1 4 1
-2 2 8

2) Use Cayley-Hamilton theorem to find inverse of the matrix.

1 1 3 24 8 12
A=|1 3 -3 Ans: %—10 2 -6
2 -4 -4 2 -2 -2

3) Use Cayley-Hamilton theorem to find the inverse of

1 -3 8 6
A=|-1 0 3 Ans: At=Z|7 -14 7
3 -2 -1 5 2
4) Show that the following matrices satisfy their characteristics
equation
2 21 1 0 2
A=l1 3 1 A=l0 2 1
1 2 2 2 0 3
5) Using the characteristics equation show that inverse of the matrix
1 0 2
)] A=|2 2 4
0 0 2
(3 1 1]
i) A=|-1 5 -1
|1 -1 3]
2 -1 1
iii) A=-1 2 -1
1 -1 2
-1
o 1
Ans: A = 2 1 3 1
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4.4 SIMILARITY OF MATRIX

Two matrix A and B of order nxn over F are said to be similar if
there exist a non-singular matrix P (invertible matrix) of order nxn such

that B=P*AP

This transformation of matrix A by a non-singular matrix P to B is
called a similarity transformation.

Diagonal matrix: If a square matrix A of order n has linearly independent

eigen vectors then matrix P can be formed such that P™*AP is diagonal
matrix i.e.

D=P'AP

Example 4:

Two similar matrices A and B have the same eign values.
Solutions:

Since A and B are similar, there exists a non-singular matrix P such that
B=P AP
Consider B—Al|=|P?AP-Al|
[B—Al|=|PAP—APIP|
=[P (A-21)P|
=[P||A-A1]|P)
=|A-Al||P7||P]
=|A- 21| w [P [P|=1
~|B=Al] = |A-Al|

Hence the characteristics equation of A and B are the same
.. A and B have same eigen values.

Example 5:

1 1
Show that A:‘O i‘ and B= 0 have same characteristics equations

but A and B not similar matrices.

Solutions:

1
Let A=
0 01

1
and B=‘
1

10‘
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Characteristics equation of Ais  |A—41|=0
1-4 1

0 1 = (1-2)"=4*~24+1=0 s equation

ie ..

.. Characteristics equation of B is
|B—21|=0

1-12 0
0 1-4

i.e.

‘:(1—zf:zz—2z+1=o

.. Characteristics equation of A = Characteristics equation of B

Now we will show that A and B are not similar
Suppose A~ B

. There exist non-singular matrix C such that, B =0 C"AC

10
Let C =
o 2

10
C = { }:2, - C isnon-singularas = [C]=0

0 2
. Ctexists
. 2 0
ade={ }
0 1
1 0
1 112 0
Cl= —adj (C)= = -
icj 4 (©) z{o J o 1
2
B L Obrs 1111 o0
C AC= 1
0 =||0 11|10 2
2
1.0 1 0 1 2
OE 0 2 0 1

Hence A and B are not similar matrices.

-2 2 3
Example 6: Let A= | 2 1 -6, Find similarity to a diagonal matrix.
-1 -2 0

Find the diagonal matrix.
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Ans: A=

o O N
o N O
o O O

4.5 CHARACTERISTICS POLYNOMIAL

Solving the determinant[A—Al], a polynomial is obtained which
is called as a characteristics polynomial.

2 -1 1
Foreg. A=|-1 2 -1
1 -1 2

The characteristics polynomial is given by

2-4 -1 1
o|A-Al|= | -1 2-2 -1

1 -1 2-2
=(2-2)[(2-2)" 1| +1[~(2-2)+1] +1[1-(2-2)]
=(2-2)[A*-44+3]+24-2-2°+62" 31 +4
=2*~64*+91—4

4.6 MINIMAL POLYNOMIAL

Monic Polynomial: A Polynomial in A in which the coefficient of the
highest power of A is unity is called a monic polynomial.

For e.g. A°+24"+34°-64+5 is a monic polynomial of degree
polynomial.

If a polynomial f annihilates A then « falso f annihilates. A for
a € R, therefore there exists a monic polynomial annihilating A.

If the characteristics roots of the characteristics equation are
distinct then f (1) = 0 is called minimal equation.

If matrix of order 3x3 are having characteristics root 2,3,3 then,
(1—2)(1—3) =0

Or (A—2)(A-3)=0 is the minimal equation.
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Hence the degree of the equation is 2 and less than the order of the
polynomial.

Derogatory Matrix: A nxn matrix is called derogatory if the degree of its
minimal polynomial is less than n.

Non-Derogatory Matrix: A nxn matrix is called non-derogatory if the
degree of minimal polynomial is equal to n.

Properties of Minimal Polynomial:
1) There exists a uniqgue minimal polynomial of the matrix A.

2 The minimal polynomial of A divides the characteristics
polynomial of A.

3) If A is the root of the minimal polynomial of A then A is also
characteristics of root of A.

4) If the n characteristics of root of A are distinct then A is non
derogatory.

Example 7:

Check whether the following matrix is derogatory or non derogatory also
find its minimal polynomial.

2 -2 3
i) A=[1 1 1
1 3 -1

Solution:

The characteristics polynomials of matrix A is

2-2 -2 3
A-al|=| 1 1-2 1
1 3 -1-4

=2°—(sumof diagonal element of A)A*+
(sum of minor of diagonal element of A)A—|A|

A 2 2l

S AP=22% +[4-4-5]1—(-6)

-2 3
1

2

=A% [2+1-1]2 +{ .

2
1 1
1 3
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A% =24-51+6
- (2+2)(2-1)(4-3)

.. The characteristics roots are -2, 1 and 3 which are distinct.

Therefore matrix A is non-derogatory.

i) A=

w N DN
w w
A N P

Solution:
The characteristics polynomials of matrix A is

2-4 1 1
A-All=| 2 3-12 2
3 3 4-1
= A°—(sumof diagonal element of A)A*+
(sum of minor of diagonal element of A)1—|A|

2 11

3 212 1 |2 1
=/13‘[2+3+4]/12+{ ‘+‘ ‘+‘ H—Z 3 2
3 3 4

3 4 |13 4 2 3

=2°-92%+[6+5+4]A-7

=23-94%+154 -7

=(1-1)(A-1)(2-7)

.. The characteristics roots are 1, 1 and 7 which are not distinct.
Therefore matrix A is derogatory.

Example 8:

Show that the matrix A is derogatory also find its minimal polynomial.

1 6 -4
A= |0 4 2

0 -6 -3
Solution:

The characteristics polynomials of matrix A is
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1-1 -6 -4
A-All=| 0 4-2 2

0 -6 -3-1
=2°—(sumof diagonal element of A)A*+
(sumof minor of diagonal of matrix A)A—|A|

1 -6 -4
T | P 1 I VR N
=2 [1+4-3]2% + + + A-l0 4 2
-6 -3 0 -3 |0 4
0 -6 -3

=A°-22+[0-3+4]21-0
=132+

= A(A*-24+1)
=2(A-1)(1-1)

.. The characteristics roots are 0, 1 & 1 which are not distinct.

Therefore matrix A is derogatory matrix.

But we know that characteristic root of A is root of minimal polynomial.
o f (ﬂ) =/I(/1—1) ==

Now check whether = f (1) .annihilated matrix A.
L H(A)= A=A

1 -6 4|1 -6 -4
A’=AA=1|0 4 2|0 4 2

0O 6 -3||0 -6 -3

1 -6 -4
=0 4 2
0 -6 -3

1 6 -4][1 -6 -4
A2_A=[0 4 2|-l0 4 2
0 6 -3 0 6 -3
A—A=0
~f(A)=10
. The minimal of polynomial of Ais f(1)= A*-4
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& degree of polynomial is 2 which is less than 3
Hence matrix A is derogatory.

Example 9:

Find the minimal polynomial and show that it is derogatory matrix.

2
Where, A= |1
1

N W N

1
1
2
Solution:

The characteristics polynomials of matrix A is

2-2 2 1
A-2l]=| 1 3-2 1
1 2 2-2

=(2-2)[(3-2)(2-2)-2]-2[2- 21 -1]+1(2-3+ 1)
=(2-4)[ A*-54+6-2|-2[-A+1]+1-1

=—A°+51* —41+24° -101+8-31-3
=-2°+72°-114+5
=(1-1)(A-1)(2-5)

.. The characteristics roots of matrix A are 1, 1 and 5.
- roots are.
.. The matrix A is derogatory.

But we know that characteristics root of A is also a root of its minimal
polynomial.

= f(2)=(A1-1)(2-5)=2*~62+5

Now check whether f () annihilated matrix A i.e.

f(A)=A*-6A+5l =0.............. (1
712 6] 2 21 100
A’-6A+5l= |6 13 6|-6(1 3 1/+50 1 O
6 12 7/ |1 22 001
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7 12 6| 12 12 6| 5 0 O
=6 13 6|-|6 18 6(+0 5 O
6 12 7| |6 12 121 0 0 5

~f(A)=0
- The minimal of polynomial of Ais f(1)= A*-61+5
And degree of polynomial is 2 which is less than 3
.. The matrix A is derogatory.
Check Your Progress:

1) Show that the following matrices are derogatory and hence find the
minimal polynomial.

12 3
() A= |0 2 3| Ans: A2-31+2=0
00 3
2 1 -1
(i) A= |0 3 —2| Ans: A°-1=0
2 4 -3

(2 Check whether the following matrix is derogatory or non-
derogatory also find the minimal polynomial.

1 3 0
(i) A= |3 -2 -1| Ans: Non-derogatory
0 -1 1
2 10
(i) A= |0 2 0| Ans:Derogatory
0 0 2

4.7 COMPLEX MATRICES
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Z =x+iy is called a complex number, where i=+/—1and X,yeR and
Z =x—iy is called a conjugate of the complex number Z

Let A be a mxn matrix having complex numbers as its elements, then the
matrix is called a complex matrix.

Conjugate of a Matrix:

The matrix of order mxn is obtained by replacing the elements by their
corresponding conjugate elements, is called conjugate of a matrix. It is
denoted by A

2-3i 1-i 3 ‘

Fore.g. A=| . .
2i+1 2 2i1-3

2+31 1+i 3
—2i+1 2 -2i-3

Properties of conjugate of matrix:

W (A=A
(2) A+B=A+B
() (AB)=AB

Conjugate Transpose:

Transpose of the conjugate matrix A is called conjugate transpose. It is
denoted by A’.

1+1 - 1
Foreg. A= i i
3 1+2 3i-2
. . 1-i 3
— -1 i p . .
= . ] then A" =| i —1+2
3 —-i1+2 -3i-2 .
1 -3i-2

Properties of Transpose of Conjugate of a matrix:
1 (A7) =A

) (A+B) =A’+B’
3) (AB) =B’A’

Hermitian matrix:
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A square matrix A is called Hermitian matrix if A= A" i.e. A= A= [aij]

mxn

is Hermitian if a; =a; Viandj.

Example 10:
1 2-i 3-i
Show that the matrix A={2+i 3 —i |is Hermitian
3+i i 3
Solution:
1 2-i 3-i
Here A=| 2+i 3 —i
3+i i 3
1 2+i 3+i
A=[2-i 3 i
N I — 3
1 2-1 3-i
AP=|2+i 3 —i
3+i i 3
A=A

Hence by definition A is Hermitian matrix.
Skew Hermitian Matrix:

A Square matrix A such that A? =—A is called a Skew Hermitian Matrix.
ie. if Az[aij] _Is Skew Hermitian if a; =-a; Viand].

mx

Here a; = purely imaginary or re a; = 0.

Example 11:
2i  5+i 6+i
Show that the matrix A=| -5+i 0 —i | is called a Skew Hermitian
—6+i1 i 0
Matrix.
Solution:
2i  5+1 6+i

Here A=|-5+i O —i
—6+i  —i 0
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-2i 5-i 6-i]
A=[-5-i 0 i
—6-i i 0 |
-2i -5-i —-6-i]
A? =|5-j 0 i
6—i i 0 |
2i 54+i 6+i
A=—|-5+i 0 i
—64+i  —i 0
. Hence A? =-A

.. The matrix A is Skew Hermitian Matrix.

Note:

Let A be a square matrix expressed as B+iC where B and C are Hermitian
and Skew Hermitian Matrices respectively.

A:B(A+ Ag)}ri{%(A—Ag)}: B+iC

1 1
B:E(A+A‘9) and C =E(A—A9)

Unitary Matrix:

A square matrix A is said to be unitary matrix if A’A=1

Example 12:
i 1 |-1+3i —2-i| . ) _
Show that the matrix A=— . .| is Unitary matrix.
J15| 1-2i -3

Solution:
Here A— 1 |-1+3i -2-i

15| 1-2i  -3-i
A0 _ 1 —-1-3i 1+2i

JI5| —2+i  -3+i

AA9—1 -1+3i -2-i||-1-3i 1+2i
150 1-2i  3—il|| —2+i -3+i
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115 0] [1 0 .
15| 0 15| |0 1|
AN = |

.. Hence A is Unitary Matrix.

Example 13:
2+i 1 3-3i

Express the matrix, A=| i 1-i 2+i| As the Hermitian Matrix and
1+i -3 5

Skew Hermitian Matrix.

Solution:

Let  A=| i 1-i 2+i|..(1)

241 -1 1-i
A=| 1 1+i -3|...... (1)
3+43i 2-i 5

Adding I and Il we get

2+1 1 3-3i| |2+i - 1-i
A+A’ =i 1-i 2+i|+| 1 1+i -3
1+i -3 5 3+3i 2-i 5

4 1-i 4-4i

=i+l 2 i—1
4+4i —i-1 10
. . 4  1-i 4—4i
B=§(A+A‘9)=—i+1 2 i=1]...am)
4+4i —i-1 10
2+i1 1 3-3i| |2+i -1 1-i
also (A—A9)= i 1-i 2+i|-| 1 1+i -3

1+i -3 5 3+3i 2-i 5
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2i 1+i 2-2i
= i-1 -2 5+i
—2-21 -5-i 0

2i 1+i 2-2i

1 o 1l . .
E(A-A):E |—1_ —2_ 5+i|....(IV)
-2-21 -5-1i 0
Now, A=B+iC
4 1-i 4-4i 2i 1+i 2-2i
A:% i+1 2 i—1 +% i—-1 -2 5+i
4+4i —-i-1 10 —2-2i -5-i 0
Example 14:
. 11 i
Prove that the matrix, A=—| .
- -
Solution:
LetA—1 1
2| A
111 i
Al =—| "
JEL —}
171 i] 11 i
APA=— X —=
\/EL -1 JEL —J
C1f1-i i
2| —i+i —i*+1]
_1_2 0| |10 |
200 2] |0 1]
SAAY =

Hence A is Unitary.
Check Your Progress:

1) Show that the following matrices are Skew —Hermitian.

2i 2 -3 4i 1+i 2+42i
MA=|-2 4 -6 @i)A=| i-1 i 5i
3 6 0 2-2i -5i 3i

2 Show that the following matrices are Unitary matrices.
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() A= 1] 1 1+i (i)
J3li-1 1
1+i —1+i
Azl '+| +.|
211+1 11
(€)) If A is Hermitian matrix, then show that iA is Skew- Hermitian
matrix.

4.8 LET US SUM UP

In this chapter we have learn

X Cayley Hamilton theorem & it application like Higher power of
matrix & Inverse of matrix.

Minimal .polynomial & derogatory & non-derogatory matrix.
Complex matrix.

X/ X/
L X X

X/
°e

Hermitian matrix. i.e A= A’

X/
°e

Skew Hermitian matrix. i.e A =—A
Unitary matrix= AA® =1.

X/
X4

L)

4.9 UNIT END EXERCISE

1. Show that the given matrix A satisfies its characteristics equation.
(1 2 2
i) A=l-1 3 0
0 -2 1
2 4 3
i) A=0 -1 1
2 2 -1
1 3 7
iii) A=14 2
12
2. Using Cayley Hermitian theorem find inverse of the matrix A.
2 -1 1
i) A=-1 2 -1
1 -1 2
i 1 3
i) A= 3 -3
-2 -4 -4
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1 4
3. Calculate A° by Cayley Hamilton Theorem if A= {2 }

3
-2 2 -3
4. LetA=| 2 1 -6 . Find a similarity transformation that
1 -2 0

diagonalises matrix A.

6 -2 2
5. Let A=| -2 3 -1| Find matrix P such that is diagonal matrix
2 -1 3
1 0 -1
6. Diagonalise the matrix |1 2 1
2 2 3
4 10
7. For the matrix A=|1 4 1|
01 4

Determine a matrix P such that is diagonal matrix.

8. If show that is Hermitian matrix.
9. Show that the following matrix are skew Hermitian matrix.
2i -3 4
i) A=3 3 -5
-4 5 i
0 1-i 2+3i
i) =l -1-i O 6i
-2+3i  6i 0

10.  Show that the following matrix are unitary matrix

ﬂ —1+i

N

) A= . .
1+1 1-i
2 2
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. 1 1 1
i) A=—1 w W
Bllw w

wW

11.  Prove that a real matrix is unitary if it is orthogonal.

12.  Check whether the following matrix is derogatory or non-
derogatory.

2 2 -3
i) A= 2 1 -6
-1 -2 0
(1 0 -1
i) A=|1 2 1
2 2 3
1 2 3]
iii) A=|2 4 6
13 6 9
2 0 1]
iv) A=|0 3 0
10 2]
1 1 3
V) A=|1 5 1
311
(5 0 1
Vi) A=|0 -2 0
1 0 5
2 2 1
vi) A=|1 3 1
12 2
9 4 4
viii) A=| -8 3 4
-16 8 7
3 10 5
ix) A=|-2 -3 -4
'3 5 7
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13. Show that the following matrix is derogatory also find minimal
polynomial.

2 2 2
i) A=[1 1 1
1 3 -1
3 10 5
i) A=l-2 -3 -4
3 5 7
(2 2 -3
i) A=l2 1 -6
-1 2 0

*hkkkk
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5

VECTOR CALCULAS

UNIT STRUCTURE

5.0 Objectives

5.1 Introduction

5.2  Vector differentiation
5.3  Vector operator V

5.3.1 Gradient

5.3.2 Geometric meaning of gradient
5.3.3 Divergence

5.3.4 Solenoidal function

5.3.5 Curl

5.3.6 Irrational field

5.4  Properties of gradient, divergence and curl
55 Let Us Sum Up
56  Unit End Exercise

5.0 OBJECTIVES

After going through this unit, you will be able to
o Learn vector differentiation.

. Operators, del, grad and curl.

. Properties of operators

5.1 INTRODUCTION

Vector algebra deals with addition, subtraction and multiplication of
vertex. In vector calculus we shall study differentiation of vectors
functions, gradient, divergence and curl.

Vector:
Vector is a physical quantity which required magnitude and direction both.

Unit Vector:
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Unit Vector is a vector which has magnitude 1. Unit vectors along co-
ordinate axisare i and j, k respectively.

i[=1]|=1k

=1

i

Scalar Triple Vector:

Scalar triple product of three vectors is defined as a. (BxE) or [5 bc }

Geometrical meaning of [a bc ] is volume of parallelepiped with cotter

minus edges a, b andc.

We have,

Vector Triple Product:

Vector triple product of a b and ¢ is cross product of a and (5 x E) ie.

a x(B x (_:) or cross product of (5 x 5) and ¢

Remark : Vector triple product is not associative in general

i.e..'.ax(Bx(_:);t(axB)xC

Coplanar Vectors:

Three vectors a,b and c are coplanar if [555] = 0 for

‘5‘ * O,‘B‘ # O,‘(_:‘ =0

5.2 VECTORS DIFFERENTIATION

Let v be a vector function of a scalar t. Let dv be the small increment in
a corresponding to the increment ot int.

Then,
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V=V (t+at)-v(t)
vV (t+at)-v(t)
t ot

Taking limit ot —»0 we get,

v (t+at) - v(t
im & = i () -V
ot—0 at ot—0 at
- - v
Wi N 2y () VO
dt -0 ot ot—0
- e o
vV (t+at) -v(t)
dt o ot

Formulas of vector differentiation:

(i) % = (kv) = kil_:/[ k is a constant]|

d . . di v
— (u+v)= — -
(W) G V)= 5+ g
d . . dv _ do
— (u.v)= —_ V.—
(i) 5 (@.V)=0. g+ Vo
d . dv du
(|v)a (U x V)= i Y

(V) If V= v,i +Vv,]+Vvk

dv dVl 2 dV2 2 dV3 ~
- = —= |+ — |+ —
Then, dt dt dt dt
Note:
If T=xi+yj+zk then r=|7| = x*+y*+ 2°
Example 1:

If 7= (t+1) f+(t2+t-1)]+(t2-t+l)szind?j—:and

d’r

dt
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Solution:—

A

o =l

T_fr(at+1)j+ (2t-1)k

2|
~—

2_
97 _ g2k
d

2

Example 2:

= (t+1) i+ (C+t-1)J+ (P -t+1) k

If T= acoswt+ b sinwt where w is constant show that

— 2—
x I =w (a x b) and d_zr =-wT
dt dt

Solution: —
TZECOSM"‘BSinVVt ____________ (i)
((jj_;: 3 cos Wt + b sin Wit---------—-- (i)

dr

L Tx — = (Ecoswt+53inwt) x (-5wsinwt+5wcoswt)
dt

_ (ax B)wcoszvvt - (B x a‘)wsinzvvt

_ (ﬁxB)WCOSZWt+ (ExB)Wsinzvvt
- (éxB)w[coszwt + sin’ vvt]

= (ExB)W(l)

:WEXB)

Again differentiating eq" (i) w.r.t. ‘t’

a’r oo
P -aw?cos wt - b w?sin wt

-w? (5 cos wt + b sin wt)

-w?r from (i)

Example 3. Evaluate the following:

d’a
dt?
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Solution: — i) —= [a b €|
s I
—a[a (bxc)}
o d o= — _\ da
—a.a(bXC)‘}'(bXC) E
=13.|bx d_c+ @xc +(5x6) d_a
dt dt dt
:_[Bxd—cj+§.@xf +(B><E) d—a
dt dt dt
:[55 dj}+{§@6}+{56d—ﬂ
t t t
-
Solution: — i) 3= |z 9 942
dt [ dtdt
_[_da dal [_ _d4a d4a da d’a
=l It |a 5 |t | - 5
dt dt® | | dt? dt dt dt
(From Result 1)
— 3_
|z % dal 540
dt dt

@ da

dt dt

3y

Solution: —= [(ExB) x T
= (axB) x T+ 2(axb
:(Exﬁ)xd—E +[§x@
dt dt
=(§><B)><d—E +(§x@
dt dt

A

Example 5. Show that T x %

Q|
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Solution : We have f

ar _ i(i]
dt dt \r

_‘
1
ﬂ|“|

dr -Tg
dt dt
r.2
_ldr r dr
rodt r? dt
LHS. # =
r
T [1d? T drj
= — X | =F———
r rdt r® dt
T ldr T
r r dt r’  dt
_ 1 % g -n [ T x
r2 - dt '
dr
r x —
_ dt
= —
= R.HS

Example 6. If T =t> i+ | 2t° - 1 j. Thenshow that T x —
5t?

Solution:

T=t+ (Zts— %j]

LU (6t2+ i)j

dt 5t3
L.H.S.
i ] k
rxd—r: t2 2t3—i2 0
dt 5t
2 2 2
5t

—+
1
>
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=i(0)-j(0) +k {t3(6t2+%j -3t2(2t3—$ﬂ
k 6t5+3—6t5+ 3
K 5 5ﬂ

= k
= R.H.S.

Example 7.1f T =ae™+be™. Show that pre n’t

Solution:

2T (from (i)

@i Y —gxoand Y
dt dt

Show that di (T x v) =Wx(T x V)
dr d°r

(2 If T=ti+(3t-t*) j+ (7t +1) k Find il

dt?

o a ~ . .dr d*f
NI, T=ti—-tj+(st-1)k, Find —, —,

dr
dt

2—

@) If T =g i+(2cos 3t) j+ (7sin 3t)] Find :szr at t = %

(5) Show that: a.— =a da where a =aji+a,j+a,k and a is

magnitude of a.
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5.3 VECTOR OPERATOR

~n

The vector differential operator V is defined as V = i 9,79k 9
OX oy oz
5.3.1 Gradient:

The gradient of a scalar function is denoted by grad ¢ or V¢ and is

defined as V¢:ia— +] % i ? Note that grad ¢ is a vector
z

OX oy
quantity.

5.3.2 Geometric meaning of gradient:

The grad ¢ is a vector right angled to the surface, whose equation is
¢ (XY, z) =c, where c is constant.

Hence for T =xi +yj +zk any pointon surface .. V¢ .dr=0

i.e. V¢ at is right angles to drand dr lies on the tangent plane to the
surface at P(T).

S V¢ L drf

Geometrically Vgrepresents a vector normal to the surface ¢ (x, Y, z) =
constant.

Example 8: Find grad ¢, where ¢ = x* y° e’

] 0 A~ 0 ~ O
Solution: grad ¢ =|i —+] —+k — | (x* y® €’
grad ¢ ( =y 62]( y* e’

=xy’’ (2y i +3x]j + xyk )

Example 9: If T=xi+yj + zk find grad r

Solution:



_ xi+yj+zk
=
T
T

sogradr=

Example 10: If T =xi+yj + zk find grad
Solution:

T:xf+y]+zf<

r= fx2+y2+22

. r.2:)(2_'_y2_'_22

2rﬂ:2x

OX

2r _x 2r y 2z_z
;
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::g:(ii ]éi ‘ )
r r r
_-1 1A
—r—Z.T(XI+yj+Zk)
-1

r

w

r

=

©
Example 11: If ¢ =2x’y—y’z find grad ¢ at (1, -1, 2)

Solution:
grad ¢ = (f 8%+J %H? %) (2¢y-y* 2)
=i ;( (2x y-y z)+ j 5 (ngy-y2 z) +R§ (2x3y-y2 z)
=i (6x7y) + j(2x° -2yz) + k (-v?)
=i 6x y+j( -2yz)-lA<y2
At (1,-1,and 2)
grad ¢ =6 (1)°(-1) i +] (21 -2(-2)(2)) -k (-2)°
=6i+j(2+4)-k
=6i+6j —k

Example 12: Evaluate grade” , where r? = x*+ y? +2°

Solution : Grad (e’z) = (i —+] %+f< g] e’

22 X . fo2A L
=ie o= + je ad +ke ol
r r

:rerz(xi +VYij +zI2)

2_
=re'T
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Example 13: Find grad r"

Solution: grad r" =V r"

=inr"? + jnr"?y +knr"?z

:nr”’z(xi+y]+zf<)

Example 14: Find grad log (x* +y* +2°)
Solution:

grad log (X*+y*+2z*) =grad log r* = grad (2log r) =2 grad (log r)

2 [I &+j —+k —j (log r)

z(.a

OX
1

(log 1)+] —(Iog n+k —(Iog r)j

=lor ~1lor 1lor
2|1 ——+j = +k ==
r ox ray r oz

=2 (i 1§+] 1X+ k 15)

rr rr rr
=2 (xiwj ELZRJ
r rr
2F

a.rT a n(a.r
Example 15: Show that grad ({t—nr]:%:( )r where

T =ri+yj+zk
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Solution: let
a=ai+ta,j+tak
~a.r=a x+ta,y+a,

.. grad (a—:j
r

_v (a.n?j
r

(1L 2k (axtmyrn
oXx "oy o0z r'

now - ii a, X+a,y+a,z
OX r"

n-1 f?[
oX

n

r"a,- (a,x+a,y+a,z)nr

r2n

n-1 ZS

" a,- (a, x+a,y+a,z)nr ;

r2n

n

r

n-1 .n-2
a,- (a,x+a,y+a, z)nx""r
r2n

similarly
o ((a,x+a,y+a,z)
oy r

n

]

r

]

n-2
a,- (a,x+a,y+a, z)nyr
r2n

VR

0 ((a1x+a2y+a3z) ]
rn

n n-2
_ R[r a,- (a, x+a, y+a, z) nzr J

2n
. grad (_a .nr]
p

r
r (a1 i+a,]+a, k)- (a,x+a,y+a;z) nzr"‘z(xi+yj+zk)

r2n
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a"  -n(@am)rtT
= r2n - 2n

a”  n(a.r) _
= r.2n - rn+2

a n(a.r) _
= “n - n+2 r

Check your progress:

Q)T =xi+tyj+zkand T = |T|
Show that:

T

a) grad (log r) = 2

b) gradr®* = 3rT

c) grad f (r) = f* (r)

= | =l

(2) If ¢ =4x*yz + 3xyz®> —5xyz
Find grad ¢ at (3, 2, -1)

(3) Show that gradr® = -3r° T

@ If F(x,y,2z) =X+ y?*+2z* Find VF at (1, 1,1)

(5) Show that V' (r)xT =0 where T =xi +yj + zk

(6) Find unit vector normal to the surface x*+y*+z* =3a° at (a, a, a)

Vo

[Hint :- Unit vector normal to surface ¢ i.e. —]

Vel
5.3.1 Divergence:

Ifv(x,y,z-= vl? +Vv, ] +V, k can be defined and differentiated at each

point (X, y, z) in a region of space then divergence of v is defined as
divv=V.Vv



92

Example 16 If F = (x*—y?) i +2xyj + (y*—2xy) k, find F

Solution: divF =V .F
= [i aixﬂ % + k ~ j . {(xz—yz)f+2xy] + (y2—2xy)l2}
0 0 0
- &( ) 6y(2Xy)+ —(y 2xy)
=2X+2X+0
= 4x

Example 17 Show that divT =3 where T = Xi + y] +z k

Solution: div T

Example 18 For 7 =xi+yj+zk show that div (" T) =(n+3)r"
where 1 =|T|

:(fa—x+]ai;+ﬁ—zj.r”(X|+y]+zR)
0 (un 0 (.n 0 ( n
:a—x(r X)+ a—y(r y)+ E(r 2)
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=3r" + nr"t (x.§+ y,X+ Z_Ej

=3r" + nr

=3r" + nr

=3r" + nr"
=(3+n)r
=R.HS.
Example 19 Evaluate div (f)where T =xi +yj+z k

T
r

Solution: We have " =

Xi +yj+zk

1]
Q|
7\
= | X
N—

+

or Ly o or
r(l)-x& r(1) yay r(1)-zE
= r2 + rz + rz
X
SIORET RS
= r2 + r2 + r2
rP-x* oty rf-z?

r?-x2+r’ -y? +r? - 22

3
3r? - (X2+ y? +22)
3

r
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3r? -r?
r.3

2
r

Example 20 If F=x*y® z* Find div (grad F)

Solution: grad F
= VF

(i Liilei %) (x v 2')
= 2xy°z* i+ 3y%z* j + Ax?y*Z* k

. div (grad F)

= V. (2xy3z4 i +3y2x%z* | + ax?y’7° R)

aix(nysz“) + a%(3y2 x? z“) + %(4 X2y 23)

= 2xy’z* + 6x’y z* +12 x’y* 7°

Example 21 Find the value of div (a x T) r" where @ is a constant

vectorand T =xi +yj+z k

Solution: div (a x T) r"

|
2
X
D —~~
|
X
=l
~—
-
5
—_——

1
_—
1
—
2|
—_~—
—_
Q|
X
=l
~—~
==
-
-
S
+
—_
Q|
X
=l
~
&)
X |°)
—_—
-
=1
~—~
| I |
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—nr (@ x T) T [ Yxi=T]
=nr"?[(a xT).T]

=nr"*(0)

=0

5.3.4 Solenoidal Function: A vector function F is called Solenoidal if
div F =0 at all points of the function.

5.3.5 Curl: The curl of a vector point function F is defined as curl
F= VxF if Fi+Fj+Fk.

-~ curlF=V x F

_i[ F_RH(( R R R_F
oy oz oX 0z ox oy

The curl of the linear velocity of any particle of rigid body is equal to
twice the angular velocity of body.

i.e. if W=w,i +w,]+w.k be the angular velocity of any particle of the
body with position vector defined as = xi + y] +zk then linear velocity

V=W x T

Hencecurl Vv = V x V

=V x (W xT)
i)k

=V xjw, w, W,
X 'y z

A A

=V x [f (W,z -way)—j (W,z -wx)+k (wy -sz)}
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i ] k
=V x i i i
OX oy 0z

W,Z -W,Y WX -W,Z W,y -W,X

=0 (W, +wy) =] (~w, w,)+k (wy +wy)
= 2W1i+2W2] +2W3R
= 2w
curl v=2w

5.3.6 Irrotational field:

A vector point function F is called irrotational if F= 0 at all points of the
function.

Example 22 Find curl (curl F) f F=x?yi-2xzj+2yzk at(L,0,2)

Solution: Curl F

ik
|l o 2
ox oy oz

2

i i k
R 3
|l x oy oz

2242x 0 -2z-X°

At(1,0,2)
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(curl F)= [2(1) +2] ]
= 4]
Example 23 Find curl V if V = (x* +yz) i + (y*+2x) ] (2°+xy) k

Solution: curl V

=°{%( 2+xy)—§(y2+2x)} i ][a%(zﬁxy)—%(y“ﬂ)}

+ I{%(yz +2x)—%(x2 + yz)}

=i(x-x) - j(y-y)+k(z-2)
0

Example 24 Evaluate curl T where if T =xi +yj +zk

Solution: Curl T

N S')|Q) x>

a

P

Example 25 Evaluate curl (
p

jwhere if T:xf+y] +zk

Solution:



O
oo

~.eurl G] =V x (%H%j +r£2kJ
i ]k
_|o o0 o
S lx oy oz
X 'y z
A

Il
_—
1
S
—1N| N
N—
[
[&))
N |Q)
7 N\
Nl<
N—
| |
1

Qo

(05 0)

ox \r oy \r

NP TR .
2y P2z

S e S 5} . .
o o

_; 2yz—32yzj 4] [ZZX—SZZXJ ‘K (2xy—32xyﬂ
i r r r

= 0i +0j + Ok

Solution: curl F
i j k
_|0 9 9o
oXx oy oz

div (curl F)



99

_ (ii AN k%) [(22-%) i+(z-x*) ]

9 rore O (52
= (2z-x)+ p. (z x)

=-1+1

Example 27 If F=grad (xy +yz +2zx), find (curl F).

Solution: F=grad (xy +yz +2x)
=V (xy +yz +2x)
0 ~0

== {i— +J—+I2

9 (xy +yz +2x)
OX oy 0z

s 0 . ~ 0
=i — +yz +7X) + +yz +7x) + k—(xy +yz +
Iax (xy +yz +2x) (xy +yz +2x) aZ(xy yz +2X)

A

=i (y+2z)+ j(x+z) +k (y+x)
. (curl F)

i ] k

0 0 0

ox oy oz
y+z X+z X+y

i {%my)-a% (x+2>]i 5 (9 5 )
+k {aix (x +2) . (Y+Z)}

oy

CURL
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B =B, +B,]j +B,k
. V. (AxB)
-V, [(z\lia) i+(A,=B,)j+(A,*B,) 12]

O (x+B8)+ 2 (A +B8)+ 2 (A +B
:a—X(AliBl) + E (AziBz) + oz (A3iB3)

5 0 0 0 0
:a_X(Al) Yoy (A) + oz (As) {a_x(Bl) i
=V.A +V.B
(i) Let
V x (Aig)

i j k
_| o 2 9
- OX ay 0z

Aligl Aziéz ASiES

-2 jRm)-Gss)
s 0 (= =

= le = (AiB)
.~ (6A OB

= ZIX & + &]

= Zix g—i\ t I x (2_5
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Check Your Progress:
(W) A=Aji+AJ+AK, T=xi+y]+zk Evaluate div (AxT)
(2) Prove that

div (Iog rTj: 1 (1+2logr)
r r

(3) For T=xi+yj+zk ) show that the vector div ( ] is both

-‘wl =|

solenoidal and irrotational.
(4) Prove that div (a.T) a= |§|2

(5) For T =x i+y]J+zk showthat Vv.(Vr") =n (n+1)r"?

(6) show that the vector F =yzi + zxj + xyk solenoidal.

7 If A= (ax+3y +4z) i + (x- 2y +3z)j + (3x+ 2y -2)k is
solenoidal find value of a.

(7) Find the direction derivative of a scalar field ¢= x*y z at (4, -1, 2)
in the direction of (3, 2, 1).

[Hint :- direction derivative of ¢ (X, y, z) along a is=a.grad ¢]

5.4 PROPERTIES OF GRADIENT, DIVERGENCE AND
CURL

= : ds : d’s
1) If S represents displacement vector, m represents velocity and ©

represents acceleration.

For Byo il il ikl
dt ox "oy 0z

grad f=V F

grad F=V.F

curlF =V x F

3) grad F and curl F are vector quantities.

4) div F is scalar quantity.
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5.5 LET USSUM UP

In this chapter we have learn
Differentiation of vectors.
Partial derivative of vectors.

X/
°

X/
°

X The vector differential Operator Del.( V)
X Divergence of a vector function.

X Curl of a vector.

X Properties of divergence, gradient & curl.
5.6 UNIT END EXERCISE

1) If A=x%yi—2xzj+xy’k, B=3zi+2yj—2x°k
2
Find the value

ox (AxB)G +(1,0,1)

2) If r=xi+yi+zk prove that(%j _ 1 r.

R3
whereR =|r|
3) Find the unit normal vector to the surface at the point(1,0,1).

4) Find the directional derivative of f(x,y,z) =xy*+yz® the point
(1,-1,1) in the direction of (3,-1,1)

5) If f=3x%y—xyj+3y°zk find div F curl F.

6) Show that the vector f=(Xx+3y)i+(y—32)j+(x-22)k is
solenoid.

7) Show that the vectorf = (3x?y)i+ (x> —2yz?)j+(3z2° —2y*2)k is
irrotational.

8) Show that div r =3
wherer = xi+yi+zk

9) Show that for any vector F
Div (Curl F)=0

10) If a=aji+a,i+ak and r=xi+yj+zk
Find Curl (r x a)

*kkkk
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0

DIFFERENTIAL EQUATIONS

UNIT STRUCTURE

6.1 Obijective
6.2 Introduction
6.3  Differential Equation

6.4  Formation of differential equation
6.5 Let Us Sum Up
6.6  Unit End Exercise

6.1 OBJECTIVE

After going through this chapter you will able to
i. Define differential equation
ii. Order & degree of differential
equation
iii. Formulate the differential equation

6.2 INTRODUCTION

We have already learned differential equation in XIIth . Hence we
are going to discuss differential equation in brief. In this chapter we
discuss only formulation of differential equation.

6.3 DIFFERENTIAL EQUATION

Definition:-

An equation involving independent and dependent variables and the
differential coefficients or differentials is called a differential equation.

dy
eg. 1 —=
J dx
x=independent variable
y= depedent variable
d’y . dy
2 —+2—+y=0
e Cax Y
3 d’y +y=0

dx"
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These are all examples of differential equations.

The differential equation is said to be ordinary if it contains only one
independent variable. All the examples of above are of ordinary
differential equations.

Order and Degree of a Differential Equations:-

(i) Order:-

The order of the differential equations is the order of the highest orderal
derivatives present in the function or equation.

If y =1 (x) is a function, then

g—y is the first order derivative,
X
2
d—)zl = i(%) is the second order derivative.
dx° dx\ dx
d’y dy
egl) —+2—+y=0
91) dx*  dx y
Order =2
2)E=Ri+L ﬂ
dt
Order =1

Degree:-

The degree of differential equation is the degree of the highest ordered
derivative in the equation when it is made free from radicals and fractions.

e.g.
d2
1 d—xil+k2y:0

order = 2, degree = 1

2 2
2 WY (ﬂj LY =0
dx dx

Order =2, degree =1

dy 1

3 = | —= | X+
! (dxj "oy

dx

Order=1, degree=2

4 3/0'_3’2: dy
dx? dx

d’y % dy %

(&) %)

Cubing both sides
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Cad Ldx
Squaring both sides

(97 2_(d_yj3
T dx? dx

Order=2, degree=2

g (d_yf 2

Solved examples:
Example 1: Find the order and degree of the following
27%
[1+(dy) }
dx

d’y
dx?

i) e=
Solution:

2 2 %
e.uz 1+(d_yj
dx? dx

Squaring both sides

(2] (]

. order =2, degree = 2

i) %{x[%} }+sin(xy)eX

Solution:
d3y 3 d3y 2 d4y
— | + X-3 | — | -—=+sin(xy) =¢”
(dxs) (dxsj dx* )
". Order = 4, degree=1
dy 5
iii =X-— +—
) Y ax Ty
dx
Solution:
2
y-d—y:x-(ﬂj +5
dx dx

. Order =1, degree=2
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2
iv) y:x-d—y +5 1+(QJ
dx dx

Solution:

2
y—x-d—y:5 1+(ﬂj
dx dx

Squaring on both sides

.. Order =1, degree=2

Check your progress:

o%u ou
S+U-—

0 X oy

Ans : order =2, degree=1

4 7 1
0 [a] oW (@] e
Ans : order=3, degree=7
3 (v +(y) =¢
Ans : order=2, degree=3

1)

4 oyt

11

Ans : order=2, degree=2

5) yll — ?l_i_ y12

Ans : order=2, degree=2
v ax=(y-xyt)”
Ans : order =1, degree=3

6.4 FORMATION OF DIFFERENTIAL EQUATION

Formation of differential equation involves elimination of arbitrary
consonants, in the relation of the variables.

Consider



Where y= independent variable

X = dependent variable

Differentiating equation (1) with respect to x

we have .. —=2aX—-————————— (2
dx

From equation (1) we have

y
a= 7
Put value of a in equation (2), we have

dy y
2 _92.2.
dx NG X

dy _2y
dx x

This is the required differential equation

Note:-

To eliminate two arbitrary constants, three equations are required. To
eliminate three arbitrary constants, four equations are required.

In general to eliminate n arbitrary constants. (n+1) equations are required.
In other words elimination of n arbitrary consonants will bring us to
differential equation of nth order.

Solved Examples:-
Example 2: Form the differential equations if y =c, cosx+c,sinx
Solution: We have

Y=C1 €OS X + C 2 SiNX ==-mmmmmmmmo- (1)

This equation contains two arbitrary constants, therefore we shall require
three equations to eliminate cq and c 2 .

Differentiating equation (1) with respect to x

dy
. —— =-C,COS X +C, COS X.
dx

Again differentiate with respect to x

d’y .
T = GiCosx—Csinx
X
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2
% = —(c, cos X+C, sin x)
X
d2
d_x)zl =y —————— [ from eq —--(1)]
d’y
o YO

This is the required differential equation.

Example 3: Form the differential equation from

X= a sin (wt+c) where a and c are arbitrary constants.
Solution: We have,
X= asin (wt+c)-------- Q)

Differentiate equation (1) with respect
" C(!I_)t( = +acos (cot+c)- w

" dx = +aw- cos(cot+c)
dt
Again differentiating w.r.t. 't

2
prole -awsin (cot+c)-w
2
(;T)Z(z w2 [a sin (cot+c)]

;=% = WX.......[using equation 1]

This is the required differential equation

Example 4: From the differential equation if y= log (ax)
Solution:

y=log(ax) = ————————————— @)
Differentiate equation (1) with respect to x .

ody 1
Cdx A

dy 1

dx  x

x.d—y =1

dx

This is the required differential equation.
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Example 5: Obtain the differential equation for the equation Y=cx+ c2
Solution: we have,

Differentiate equation (1) with repect to x
dy
v
Put value of c in equation (1)

2
y: Xd_y+(ﬂj
dx \dx

This is the required differential equation.
Example 6: Obtain the differential equation for the relation

c

. y=a-e* +b-e*Where a,b are constants.
Solution: we have,
Ly=a-e”+b-e — e (1).

Here the number of arbitrary constants is two

Hence we shall require three equations to
Eliminate and b. So we differentiate the given equations twice.

ay_ 2a-e* +3b-e¥ — —mmmmmmeeeeee (2)
dx
d’y » .
?:4a 8> +9b- % — e (3)
From equation (1) (2) & (3) elimination of a & b gives directly
y 1 1
dy 2 3/=0
dx
2
d’y 4 9
dx

In the determinant
1st column is LHS

Column 2nd column 2nd column contains coefficients a-e*
Expanding the determinant

2nd column contains coefficients of b-e**

dy d?
—(18-12)——(9-4)+—(3-2)=0
y-8-12)- $(9-4)+ £ ¥ (3-2)

2
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Cdy o ody

v -d—x+6y=0
This is the required differential equation.
Example 7: Find the differential equation of all circles
touching y axis at the origin and centers on x-axis
Solution:

Y -axis
A
< » X -axis
(a, 0)
v
The equation of such a circle is
(x—a)2 +y’=a’
ie. X' —2ax+a’+y =@’
X +y°—2ax=0——————————— )

Where a is the only arbitrary contents
Differentiate equation (1) with respect to x We have

2x+2y-ﬂ—2a:0
dx

x2+y2—2x-(x+y-ﬂj:0
dx

x2+y2—2x2—2xy~ﬂ:0
dx
-x2+y2—2xy-ﬂ=0
dx
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g 2xy'ﬂ+x2—y2 =0
dx

Which is the require differential equation.
Check Your Progress:
1) Form the differential equation of all circles of radius a.
278 2

Ans. 1+(dyj =a’ d_g/

dx dx
2) Obtain the differential equation whose general solution is given by
y =e*(Acosx+Bsinx)

2
Ans d—¥—2ﬂ+2y=0
dx dx

3) Find the differential equation whose general solution is given by
y=Ce*+C,e " +c,-e¥

3
Ans d z 2d J de 6y=0
d x dx* dx

4) Obtain the differential equations for the following:
i) y=A-e¥+B-e*

2

Ans d—Z—S dy+6y 0
dx dx

ii) s=ce” +c,-e"

Ans E—E—Z =0
dt* dt

iii) y = A cos 2t+ B sin 2t
2

Ans ?j¥+4y 0

iv) y = ax® +bx?

Ans 2d &Y _ax. dy+6y 0

dx? dx
V) x = Acos(nt+ o
2
Ams OI—2/+nx 0
dt
Vi Y = A+Bx+Cx?
Soln dy =0
dx?

Vii Y =sinXx+c¢
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Viii

Ans
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d_y =CO0S X
dx

y= (Cl + sz)ex

d’y  dy
=Y 2.%4y=0
dx? dx y

6.5 LET US SUM UP

In this chapter we have learn

R/
L X4

R/
L X4

R/
L X4

o d . . . .
Equation in termd—y of is called differential equation.
X

Degree & order of differential equation.
Formation of differential equation while removing arbitrary

constant likes A&B,&C.

6.6

UNIT END EXERCISE

1)

2)

Vil.
Viii.

Find the order 7 degree of Differential equation given below

dy) (d%y) .dy
— —3 — —
dx3j o ) T Y

_- _%

Formulate the differential equation
Y = A+ Blogx
X =asin(w++c)
Y = c”(Acosx + Bsinx)
Y — emCOSAX
Y = ax® +bx
Y =cx+2¢” +¢°
X2 +Y?=2ax
Y? =4ax
e*+Ce’ =1
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Y = ACo0s2x+ BSin2x

*khkkkk

v

SOLUTION OF DIFFERENTIAL
EQUATION

UNIT STRUCTURE

7.1  Objectives

7.2 Introduction

7.3 Solution of Differential equation

7.4  Solution of Differential Equation of first order and first degree
7.5 Let Us Sum Up

7.6 Unit End Exercise

7.1 OBJECTIVES

After going through this chapter you will able to
<> Find general & particular solution of differential equations.
X Classification of differential equation.

<> Apply particular method first find the solution of differential
equation.

*

7.2 INTRODUCTION

We have already formed differential equation in previous chapter.
Here we are going to find solution of differential equation with different
method. It is very useful in different field.

7.3 SOLUTION OF DIFFERENTIAL EQUATION

General Solutions:-

The general Solution of a differential equation is the most general
relation between the dependent and the independent variable occurring in
the equation which satisfies the given differential equation.

Particular Solutions:-
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Any particular solution that satisfies the given equation is called a
particular solution e.g.

dy_.
dx
. dy=5dx

Integrating both sides we get
.[ dy=5- I dx -+ constant
Y=5x+C

This is called as general solution
Suppose C=7 is given
Then particular solution is given by putting of ¢ in the general solution

Sy =5x+7
Check Point:-
1) Find the general solution and particular solution of the differential
equation
dy

—=XxWheny=4atx=0
dx

Solution:  y= X% +C

y:X%+4

Differential equations of first order and of First Degree :-
An equation of the form,

men Yo
dx

Where ‘M’ and ‘N’ are functions of x and y or constant. is called
differential equation of first order and first degree.
This equation can also be written as

Mdx + Ndy =0

7.4 SOLUTION OF DIFFERENTIAL EQUATION OF
FIRST ORDER AND FIRST DEGREE

There are many methods that can be used to solve the differential
equations. Important one among those are listed below.

1) Variable seperable form.
2) Equations reducible to variable seperable form.

3) Homogeneous equations.

4) Exact differential equations.

5) linear differential equations.

6) Equations reducible to linear differential equation.( Bernoullis’s

differential equation)
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7) Methods of substitution.
We will explain all these methods one by one in detail.

7.4.1 Variable Separable form:-

Working Rule

1)  Consider the differential equation Mdx+ Ndy=0

2)  If possible rearrange the terms and get f(x) dx +g(y).dy=0

3) Integrate and write constant of integration in suitable form, usually
C.

4)  Simplify if possible.

Solved Examples:-
Example 1: Solve (3"tany)-dx+(1—e")Sec’y.dy =0

Solution: (3*tan y)-dx+(1-e*)Sec’y.dy =0

+ throughout by (1-e* )-tan y we get

X 2
[3exjdx+sec y-dy:O ———————— 1)
l-e tany

This is in variable separable form
.. Integrate equation (1), we get
X 2
J-3eX dx+j Sec’y
le tany

. e Sec’y
..-Sjex_l-dx+.[ any -dy=c

-dy = constant

- -3log(e* ~1)+log tany=logc
- log(e” —1)73 +log tany=logc

~. log(e”- 1)'3 xtany = logc
 tany
ey

-~ Removing log both side

=C

- tany=cx (e - 1)3
This is the general solution of a given differential equation.

y dy 2 2 2.2
= — =1+ X+ Yy +X
X dx \/ y y

Example 2: Solve
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Solution: yay_ \/1+_x2 +y? (1+ x2)
X dx

% :\/1+x2 )x(1+y?)
% )

,_><dy xaf (147 ) dx- === - - - -

1+y

This is in variable separable form
Integrate equation (1)

I\/m dy=%~j2x«/1+x2 -dx+c

\j%dx= 2m+c

I[f(x)}nx f*(x)dx
[F(0]™
n+1

SR e Bt

1 %
1+y? ==(1+x*)?+c
Iy =2 (1+x7)
This is in required general solution.

Example 3: Solve  (1+ x)-%ﬂ: 2e”’
X

Solution: The given equation is

(1 x)-% =(2e7 -1)
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This is in variable separable form,
Integrate equation (1), we get

1 e B
.|‘X—+1 x+j )dy =log ¢

~log(x+1)+ Iog(ey ~2)=logc
. log [(x+1)-(ey - 2)] =logc
L (x+1)-(e"-2)=c

This is the required general solution.

Example 4: Solve 3e* tan y-dx+(1+e* )sec’ y-dy =0
given 'y =% when x=0
Solution: The given equation is
3e*tany-dx+(1+e*)sec’ y-dy =0
+ through out by (1+e*)-tany

X 2
. 3e .dx+sec y
1+e* tany

This is in variable separable form,
Integrate equation (1) we get

X 2
3ex_dx+J~sec Y .dy=logc
1+e tan y

sec’ y
-dx+ -dy=logc®
1+e* J.tany y=19

3log(1+€")+log tany=log ¢
. log(1+e* )3 +log tany=log ¢
. lpg |:(1+eX )3 -tan y} =lpgc

" (1+eX )3 -tan y =C--------------- 2

This is the required general solution
To final particular solution:-

put )F% at x=0 in equation -------- 2
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. (1+1)*-tan %/, =c

4
.. c=8
Put value of c in equation (2)
(14 ex)3 tany=8
This is a particular solution
dy x (2logx +1)

Example 5: Solve — =—
dx sin y+ ycosy

Solution: The given equation is
dy  x(2logx+1)
dx siny+ycosy
. (siny+ycosy)-dy =x(2logx+1)-dx——————— )
This is in variable separable form
Integrate equation (1), we get
I(sin Yy + Yy COS y)~dy=J.x(2Iog X+1)-dx +constant

J.siny~dy+J.y-cosy-dy=2jx-|ogx-dx+fxdx+c
. X2 2 2
—C0S Y+ ysin y+cosy:2.{logx-?—?+?}tc
ysiny =x?logx—x*+x*+c
s ysiny=x*logx+c
This is required general solution

Check Your Progress:
1)  solve:

W _gev e

dx

3
X
ex+€—ey =C

2)  solve: (y—x.ﬂj:a_(yz_i_ﬂj
dx dx
ans  (l-ay)(x+a)=cy
3) solve: log a_ ax+by
dx
eax e—by
a b
. dy
4)  solve: XCOS XCOS Yy +5in y-d—zo
X

ans  Xxsinx+cosx—logcosy=c
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5)  solve: Sec®x-tany-dx+sec’ y-tanx-dy =0
ans  tanx-tany=c
6) solve: dy _ =et
dx
ans l-ezy—eX:c
2

7.4.2 Equations Reducible to variable separable forms:

Sometimes we come across differential equations which cannot be
converted into variable separable form by mere rearrangement of its terms.

These differential equation can be suitable substitution
Solved Examples:-

Example 6: solve:  (x— y)2 jy a’
X

Solution: we have  (x—y)’- gy Al ———— )
X

Substitute x-y=t
Differentiating with respect to x, we get

_ Gy _dt
dx dx
g
dx dx

Using equation (1) we have

t? (1—$j =a’
dx

dt a’
Cdx
Sa_ @
dx t?
_dt t?-a’
Cdx
t2
t*—a
This is invariable separable form
Integrating we get

2~dt:dx

2_
. X= J‘ta——i_a dt+c
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aZ
x:j dt +-[t2 7

. X=t+a’ ~i-log (t_—aj+c
h 2a t+a

a t—a
x:t+§- log [—j+ c

-dt+c

t+a
t=x-y

o a (x—y—aj
S X=X-y+—-log +C
2 X—y+a

_a (x—y—aj
=—-log +C
2 X—y+a

This is the required general solution

Example 7: Solve g—y =cos(x+Y)
X

Solution: We have % =COS(X+Yy)-———————~— Q)
X
Put X+y=t
Differentiating above with respect to x, we get
1+ﬂ - ﬂ
dx dx
L Oy _dt
T odx  dx
Using equation (1)
" dt —1=cost
dx
" E =1+cost
dx
" L -dt =dx
1+ cost

1
. ————dt=dx
2t
2C0s A
This is invariable separable form,
Integrating we get

-dt:jdx+constant

J 1
N 2C082%

o L fsec? U dt = x+c
> [sec” 13
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This is the required general solution,

Example 8: Solve ~ (4x+ y)2 -%:l

dy
P . — dy 2
Solution: The given equation is ™ = (4x+ y) ——————

Put (4x+y)=t

Differentiating above with respect to x
N dy _ dt

dx  dx
_dy dt
Cdx dx
Using equation (1), we have
ﬂ—4 =t°
dx
L t* +4
dx
1
P+ 4
This is in variable separable form
Integrating we get,

-dt =dx

I ! -dt:jdx+constant

t*+4
Ji‘tan‘1(£j=x+c
2 2
t=x+y
‘. l-tan‘l(ﬂ)=x+c
2 2

. tan™ (XLZVJ =2x+¢, wherec, =¢

This is the required general solution

Example 9: Solve (x+ y)‘%-F y=0
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Solution:

Put x+y=t

Differentiating with respect to x, we get

PV
dx dx
dy _dt
Cdx dx
Using equation (1), we have

dx
at . x-—
x ot
Xy
dx t
dt X
dx t

xdx = tdt
This is in variable separable form
Integrating we get,
j xdx:_[ tdt+constant

X2 t2

—=—+c

2

x? =t*+2c
t=x+y

X=X 2xy+yP+ 2
. 2Xy+ Yy =-2C
. y* +2xy =c, where ¢, =—2¢

This is the required general solution

Example 10: Solve (Xcoslj-dx—[l-sinzwosz)-dy =0
X X y X X
Solution:

The equation is, (X coslj . dx—(ﬁ-sin y +C0S XJ -dy=0
X X y X X
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Substitute %: v
. Y=VX

Differentiating above with respect to x, we get
. S—Z =V+X-—

But the above equation can be written as

. z.cosz_[z
X x \y

B VCOSV-(E-SinV+COSVj'(V+X-%j=0

\Y

-sinl+cosyj jy:O

X X X

X

By rearranging the terms, we have

1 sSinv+vcosv
X =——————dv
X vsinv
1 sinv+vcosv
. Z.dX+———dv=0
X vsinv

This is in variable separable form

Integrating we get,

J‘ . dx J'SII’]V-i-VCOSV

dv =constant

vsinv

. logx+log(vsinv) =c

log (x - vsinv) =lggc

XV -Sinv=c

v=Y

X

g x.XsinX:c

X X

. ysin X:c
X

This is the required general solution

Check Your Progress:

Solve the following

1) ﬂ+e% =Y
dx X

2) (1+eyyj+e%’(

1-2
y

x)d

Ans : log cx:e%

d—y:O Ans:x+y‘eyy =C
X



124
3) (2X—y)-e%+(y+x-e%j-%:0 Ans:y2+2x2e%:c
X

[tanl—lsec2 X}dx+seczl-dy=0
X X X X

Ans X+tan (X] =C
X

7.4.3 Homogeneous Equations

A differential equation Mdx+Ndy=0 is said to be homogeneous if M & N
are homogeneous functions of x and y of same degree

Working Rule:
1)  Check whether differential equation is homogenous in x and y
2)  Express g—y interms of x and y
X
3) Puty=vx
4) .. dy =V+X- dv
dx dx

5)  Separate x and y variables and get F(ex)dx+ g(v) dv=0
6)  Solve by integration

7) Put v:X and simplify
X

Solved examples:-

2 2 _
Example 11: Solve (x*+y?)dx+2xy-dy =0

2 2 .
Solution: We have (X +y )dx+2xy dy=0

Here M and N are homogeneous expressions in x and y of the second
degree

2xy-dy=-(x2 + yz)dx
. 2xy-dy=-(x" +y?)dx

oo (o) o
" dx 2Xy
put y=vx
ey
dx dx

Using equation 1 we have

dv  x? +v3x?
VhX—=—"-—""1
dx —-2x-vx
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dv X (1+v2)

CVAEX—= >
dx —2V-X
dv 1+ 2v
X —
dx  —2v
dv 1+ 3v?
dx -2V
. -2V2 -dv :de
1+3v X

This is in variable separable form
Integrating above expression we have

__I dv:J'l dx + cons tant
1+3v?

‘. -—Io 1+3v? ) =log x+log c
5109 (1+3v*) = log x+ log

g % log (1+3v* ) = log (cx)
. log(1+3v*) =-3log (cx)

. log(1+3v*) =-3log (cx)

. 1+3vi = 1

. x®+3xy* =k where k:l3
c

This is the required general solution

Example 12: Solve  y*+x° dy_xy-ﬂ
dx dx
Solution:
i PR 2 o dy
The given equation is Yo+ X ‘&zxy-
=xy - ——x*>-—2
= dx dx
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2
R B
dx xy-—x
This is a homogeneous equation
Put y=VX

[1—% dv= 1dx
v X
This is in variable separable form

Integrating we get,

J.[l—lj dv :J'l dx+constant
v X

.. vlogv=logx+logc
.. v=logv+logx+logc
. v=log(vxc)

_y

X

y
=lo _xcj
i

=log cy

X< X<

. y=xlog cy
This is the required general solution
Example 13:solve  (x°+y*)dx—3xy”-dy =0

Solution:
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(x*+y®)dx—3xy*-dy =0
This is a homogenous equation
(x*+y®*)dx=3xy’ - dy

cdy
Tdx 3xy

Put y =VX

Using equation 1 we have
dv X+
S VEX—= 7
dx 3x-v°x
dv X (1+v3)
dx  3v%-x°

o3 1
T1-28 X
This is in variable separable form
Integrating we have
1 ¢ 6v?

1
——.| ———-dv=|=dx+constant
2 '[2v3—1 -[x

—%Iog(2v3—1):log x+logc
. log(2v® ~1)=-2log (cx)

-~ log(2v* —1) =lpg (cx) *

(2\/3 —1)— po
Put v=X
X
3
2y_3_ = 21 2
X cX
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- 2y° —x* =kx where k:Ci2
This is the required general solution
Example 14: solve (xtan%— ysec’ %j dx + xsec’ % .dy=0
Solution:
The given equation is

(xtanz— ysec? dex+ xsec’ X-dy =0
X X X

y

2
sec” - —Xtan
dy VP TTE

dx xsec? Y

This is a homogeneous equation
Put y =vx

Using equation 1 we have

dv tanv
S — =Y ———
dx sec v

dv _ tanv
dx sec’v
sec’v 1

dv=—-—-dx
tanv X

2
. X V-dv+—1-dx:0
tanv X
This is in variable separable form

Integrating we get,

. J- sec’v
~Jtan?v
.. log tanv + log x =log ¢

1
-dv+I—dx =constant
X

= log (tanv-x ) =lgg c

SoX-tanv=c
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Putv:X
X
x-tanX =C
X

This is the required general solution
Check Your Progress:
1) solve the following

i) xdy — ydx = {/x* + y* - dx

ans y+w/x2+y2 = cx?

i) (x+y-cot§de—ydx:O
y
X
ans y =csec—
y

dy dy
2ix2. 2L oyxy 2L
iii) Yo+ i y i

ans  cy= ek
iv) (%" —y?)dx=2xydy
ans  x(x*-3y*)=c

V) xﬂ=y+x/x2+a2

dx
XZ
2
ans y= c-eAy

. d
Vi) (x+y)-d—§=x—y

ans  —y’ —2xy+x°=c¢
7.4.4 Exact Differential Equation

Definition:-
The equation Mdx+Ndy=0 is said to be an exact differential equation if
and only it.
Mdx+ Ndy=du
Where u is some function of x and y
e.g. xdy+ydx=0 is exact
- U=Xy
Where
xdy+ydy = du
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Necessary and sufficient condition :-

The necessary and sufficient condition that the equation Mdx+Ndy=0 is
exact is.

oM ON
oy ox
Rules for the General solution:-
If the equation Mdx+Ndy=0 is exact then its general solution is given by
I M (treat y as constant) dx + I N (terms free fromx ) dy =c
Where

1) In first integral with respect to x, treat y as constant

(i) In second integral do not take the terms containing x i.e. take only
those terms of N which are free from x. If no such term is available then
second integrals may not be considered.

(iii)  cis arbitrary constant of Integration.

Solved Examples:-
Example15: Solve (5x* +6x”y” —8xy) dx+(4x’y —12x’y* —5y*)-dy =0

Solution: The given equation is:

(5x" +6x7y* —8xy® )dx+(4x’y —12x°y* —5y* )dy =0 ————— @)
- M=5x* +6x°y* —8xy*
N= 4x%y —12x°y* —5y*

g %z%(5x4+6x2y2—8xy3)
= 0+12x%y — 24xy?
oM
s —— =12x%y — 24xy?
oy y y
. ﬂN_ 2 3 2.2 4
. 5_5(% y-12x°y° -5y )
= 12x°y —24xy* -0
g ﬁ—N=12x2y—24xy2
OX
oM _oN
0y Ox

Hence differential equation (1) is exact
Its solution is given by

.[ M (treat y constant ) dx +_[ N (terms free from x)-dy =c
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g I(Sx“+6x2y2 -8xy® )dx+ j(—5y“ ) dy=c
5 3 2
L5 X ety X gy X g Y
) 3 2 )
X®+2x°y? —4x*y  —y® =c
This is the required general solution
dy = 4x’y*+ycosxy

Example 16: Solve —= ;
dx 2X"y 4 X COS Xy

Solution:
The given equation is
dy _ 4x°y’ +ycosxy

dx  2x*y+Xxcosxy

- (4x°y? + ycos xy) dx+(2x" +ycosxy) dy =0........... @
Comparing with Mdx+Ndy=0; we have

M =4x%y® + ycos xy

N =2x"y+Xxcos xy

oM _ £(4x3y2 +yCosxy)
oy ody
ﬂ:8x3y2+cosxy—xy5inxy
ay

JON 0O

S22 =2 (2x*VY +vcos

OX x( Yoy xy)

é’N 3 i

—— =8Xy +C0Ss Xy — xysin xy

OX

.M _2oN

oy Ox

Hence differential equation (1) is exact
Its solution is given by

j Min(treat y constant ) dx + J. N (terms free from x)-dy =c
(4x°y* + ycosxy) dx+jody =c
4y2'|'x3dx+ yJ'cos Xy =C

4 -
X SIN X
2 X, sinxy

4

x*y? +sinxy=c

4y y C

This is the required general solution
Example 17: Solve (x—2e”)dy+(y+xsinx)dx=0
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Solution:
The equation given is
(x—2e")dy+(y+xsinx)dx=0
o (y+xsinx) dx+(x—2e” )dy =0————— Q)

Comparing with Mdx+Ndy=0; we have
M =y+Xxsinx

N = x—2¢e’

oM (O .
g ﬂ_yzﬂ_y(erSInX)
LMy

ay
~ON 2

. 5:5()(—26)/)
SN,

OX
.M _oN

S8y Ox

Hence differential equation (1) is exact
Its solution is given by
_[ M (treat y constant)dx + .[ N (terms free from x)-dy =c

- I(y+xsinx)dx+j(—2-ey)-dy =c
Xy +[ x(—cosx)+sinx]-2-e’ =c

This is the required general solution
Example 18: Solve

[y(1+%j+cos y} dx+(x+logx—xsiny) dy=0
Solution: The given equation is
{y(n%}rcos y}dx+(x+logx—xsin y)-dy=0————(1)
Comparing with Mdx+Ndy=0; we have
M= y(l+% +Cosy

N =x+log x—xsiny

oM 7O 1
. ——=—1|Y|1+— |+cCOSY
oY oy ( xJ J
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oM 1 .
—=14+—-siny
oY X
: ﬂ—i-(x+logx—xsiny)
COx  Ox
JN 1 .
. —=1+—-siny
OX X
oM _oN
oY  OX

Hence the differential equation (1) is exact
Its solution is given by

I M (treat y constant) dx + I N (terms free from x) dy =c

I(y.(1+§)+cos y] dx-+ [ody =

y-.[[l+§) dx+_[cosy dy=c

y(x+logx)+xcosy=c
This is the required general solution
ﬂ+ yCcosSX+siny+y 0
dx sinx+Xxcosy+ X

Example 19: Solve

Solution: The given equation is
ﬂercosx+siny+y:0
dx sinXx+Xxcosy+X
dy  (ycosx+siny+y)
&__(sinx+xcosy+x)

(sinx+xcosy+x)dy =—(ycosx+siny+y)dx
. (ycosx+siny+y)dx+(sinx+xcosy+x)dy =0————(1)

Comparing with Mdx+Ndy=0; we have
M=ycosx+siny+y
N=sin X+ XCoSy + X

ﬂ—i(ycoswrsin y+Y)
ay oy

oM

—— =C0SX+CoSy+1

ay

oON O ,.
—— =—(sinx+xcos y +X)
OX  OX

JON
—— =C0SX+Cosy+1
OX
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oM ON

5y ox
Hence the differential equation (1) is exact
Its solution is given by

I M (treat y constant)dx +J' N (terms free from x)dy =c
. I[ycosx+siny+y] dx+fody:c
" y-jycosx-dx+siny-Idx+y-jdx:c

S ysSinX+Xxsiny+xy=c
Which is the require general solution

Check Your Progress:
Solve:(1) (a®—2xy—y?)dx—(x+y)"-dy=0

3

y

Ans. azx—xzy—xyz—gzc

2 (1+e%jdx+eyy [1—§jdy =0
y

Ans. x+y-e%=c

(3) [cosx-tan y +C0s( X+ y)]dx+[sin X-sec” y +cos( X+ y)]dyzo
Ans. sinx-tany+sin(x+y)=c

(4) (yzeXyZ +4x3)dx+(2xy-eXyZ —3y2)dy=0

Ans. e +x' -y =c

(5) [1+log(xy)]dx+ {1+ g}dy =0

Ans. y+xlog(xy)=c
6) (2xy+e”)dx+(x*+xe’)-dy=0
Ans. x’y+xe’ =¢

(7 [ysin(xy)ery2 cos(xy)} dx+[xsin(xy)+x2ycos(xy)de =0

oM _oN _ sin xy + Xy cos(xy) + 2xy cos(xy) — x>y sin(xy)
oy  oOX
General solution is given by

xysin (xy)=c

ADnS.
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Vii.

viil.

Xi.

Xii.

Xiil.
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7.5 LET US SUM UP

In this chapter we have learn

% solution of D.E:- general solution, particular solution
% variable separable form:- dx
cf(x)dx=cf(y)dy+c

% Equations reducible to variable separable form.

dy _ £09)

% Homogeneous differential equation i.e
dx  g(xy)

With substituting Y=Yx.

7.6 UNIT END EXERCISE

Solve the following differential equation.
dy _ SinX + XCOSX
dx Y(1+2logu)
Yoy x’e’y
dx
2x Cosy dx - (1+x? )siny dy =0
(x +1)ﬂ+1= e
dx

y:ax+by+c
dx

. sin(x+ y)+cos(x+Y)

dy _ %4y

PR

ﬂ:(4x+y+1)2

dx

N_y/ sin(V

&—4+sm(4)

Yo ey +1y

dx

dy 4.V y

&_1+4—0054

¢y Y=y
dx

2
(4- y jdx+ﬂdy20

x> X

ay_
d
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2 2
Xiv. ﬂ+%:0
dx 3x°+y

XV. 4(x+ y)ﬂ=3x-4y
dx

*khkkkk

8

EQUATION REDUCIBLE TO EXACT
EQUATIONS

UNIT STRUCTURE

8.1  Objective

8.2 Introduction

8.3 Definition

8.4  Linear Equation And Equations Reducible To Linear Form
8.5  Equations reducible to linear form

8.6 Let Us Sum Up

8.7  Check your progress

8.8  Unit End Exercise

8.10BJECTIVE

After going through this chapter you will able to

X Find the solution of non-exact .differential equation.
Find the solution of linear .differential equation.
Reducing to non-linear equation into linear equation.
Find the solution of non-linear equation.

-,

R/ R/ R/
L X X I X4

8.2 INTRODUCTION

In previous chapter we have learn about exact differential equation & its
solution. Now here we are going to discuss none exact differential
equation. To find the solution of non-exact differential equation we use
integrating factor which convert non-exact differential equation to exact
differential equation. Also we discuss about solution of linear differential
equation.
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In some cases equations which are not exact can be converted to exact
differential equation by multiplying by some suitable factor called as
Integrating factor.

8.3 DEFINITION

Integrating Factor
If the equation leMdx +leNdy=0 is exact
then le is said to be an integrating factor of the equation Mdx+ Ndy =0

8.3.1 Rules of finding Integrating factor :-

Rule (1)
1
Mx + Ny

If the equation Mdx+Ndy=0 is homogeneous then is

integrating factor

Solved Example:

Example 1: (x*y—2xy®) dx-(x*~3x*y)dy =0
Solution: The given equation is

(xzy—2xy2) dx-(x3—3x2y)dy:0 ........ @

This is a homogeneous equation.

Comparing with Mdx +Ndy=0 ; we have

M =X’y —2xy?
N = -(x*-3x%y)
1f =
Mx + Ny

1

x°y —2x°y — X’y +3x%y?
. (xzy—2xy2) . (x3 —3x2y)

v v dy =0 is exact
ie. (1 —gj dx-(i2 —Ej dy =0 is exact
y X y |y

Its general solution is given by
j M (treaty const) dx +I N (terms free from x) dy =c
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I[%—%jdxﬁsdy:c
% -J'dx-zj'%dx +3-Jédy:c

g—ZIogx+3logy=c

This is required general solution
Check your progress:

Solve
i) (3xy*—y°) dx +(xy* —2x’y) dy =0
. 1
Hlnt . IF = X2—y2
General solution is given by
2
o _ %

X3

i) (x*=3xy+2y?) dx +x(3x-2y) dy=0
Hint: I.F. =i3
X

General solution is given by
x*log X + 3xy =y’ +cx’

8.3.2 Rule (1) :

If the equation Mdx+Ndy=0 can be written as
M=y f(y)dx, N=xf,(xy)-dy=0
ie. M=yf (xy), N=xf,(xy)

then

IS an integration factor.
Mx-Ny

Note :- f, (xy), f,(xy) are functions of xy.

Solved Examples :-

Example 2: Solve (X’y* +2) ydx+(2-2x’y*) xdy =0

Solution: The equation is given by
(xzy2 +2) ydx+(2—2x2y2) xdy =0
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Comparing with Mdx+Ndy=0; we have
~ M=(xy*+2) y
N = (2:2x’y*)-x

f.=
Mx — Ny
1f = L
(XY 2-2+2¢?)
e L
3x°y
X2y +2 2-2x%y?)-x
( y3 3)yx+( 3y3) dy=0
3x°y 33Xy

. 1 2 1 2 2
iLe| —+—- dx + —— | -dy=0
[3x 3 x3y2j (3x3y3 3y] d

which is a exact equation
.. Its General solution is given by

I M (treat y constant) dx + f N (terms free from x) dy =c
I 1.2 312 dx + J.i dy=c
3x 3 X%y 3y

}J'de+iz- %dx—gjl-dy:c
37X 3y X 3’y

Elogx—i—glogy =C
3 6x’y? 3

1
. log x-XZ—yZ—ZIog y=c, wherec, = 2¢c

Check your progress:
1. solve :
(x*y? +xy+1) y-dx+(x*+y* —xy+1) xdy =0
. 1
Hint: LF. ——
2X2y2
G.S. is given by

xy +log x-i—logy:c
Xy
2. y(xy+2x2y2)+x (xy-xzyz) dy=0

1
Ans x> =cy-ev
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8.3.3 Rule (111):
oM _oN
If 8yN 0X =a function of x alone. Say f(x) then ej f(x)dx is

integrated. factor.

Solved Examples :-

Example 3: Solve (y* +2y)dx+(xy® +2y* —4x)dy =0
Solution: The given equation is
(y* +2y)dx +(xy® +2y* —4x)dy =0

Comparing with Mdx+Ndy=0; we get

M= y*+2y

N = xy*+2y* —4x

OM 0,

) 6_y = 6_y( Yy + 2y)
0

<

=4y° +2

D o
Z <

= aa_x( xy® +2y* - 4x)

ﬂ:y?’_z],
X

3-(y° +2)
y(y3 +2)
3 .
—— = function of y alone
y
LLF = e

3 [Lay
= e y
-3lo
=g gy
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ILF. = %
4 3 4
By R

This is exact differential equation
Comparing with Mdx+ Ndy=0; we get

M:y+£

2
N :x+2y—413
y

General solution is given by

I M (treat y constant) dx + I N (terms free from x) dy =c

_[[er %jdx+2~ _[ydy =C
£y+ %} de+2y£=c

ey
y+ — | X+y“=cC
y
This is required general solution.

Check your progress:
Solve :

i) (2xy'e’ +2xy° +y) dx+(x*y‘e’ —x’y* -3x) dy =0
Hint: LLF. = i ..........

4

y
General solution is given by
2
X X
X&' +—+—==c
y 'y

ii) X*y*dx +(x°y —2) dy =0

3
Ans 3x3y—2y—6=cy-e/y

8.4 LINEAR EQUATION  AND EQUATIONS
REDUCIBLE TO LINEAR FORM
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The first order and first degree linear -
Differential equation is of the type

d
—Zpy=Q
dx

Where vy is dependent variable and x is independent variable. and p& Q
are functions of x only. (may be constant )

The above differential equation is known as Leibnitz’s linear differential
equation.

Working Rule:

1) Consider linear differential equation.
dy

d_x+ py =Q

Where P and Q are function of x or constants only
Its integrating factor is given by

LF. = el™
Its solution is given by

y- (LF)=[Q-(1.F.)dx+c

Where c is arbitrary constant.

2) For linear differential equation
X px=Q
dy 1 1

Where p1 and Q1 are functions of y or constants only
Its integrating factor is given by

Its solution is given by

x- (IF)=[Q (IF) dy +c
Where c is arbitrary constant.
Solved Examples:-

Example 4: Solve (x+1) g—i— y=e"(x +1)2

Solution: The given equation is
dy 2
X+1) —=-y=e"(x+1
(x+1) o —y=€"(x+1)
Dividing throughout by (x+1) we have

dy 1
o ————y=ge" (X+1)........ 1
dx (x+1) y (x+1) @
This is of the type
d
+ Lapy=Q
dx

Hence equation (1) is linear differential equation.
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Where
1
P=———— ,Q=¢" 1
%D Q=e*(x+1)
“LF, —el™
L
=@ 'xtl
_ e—log(x+l)
F. —el)
IF.= 1
X+1

Hence the solution of differential equation (1) is
y- (IF)=]Q (IF) dx+c

Ly L—J.ex(x+1) (Xil)dx+c

X+1
" L:J.ex-dx+c
xX+1
Y
x+1
oy =(e +c)(x+1)
This is the required solution.

X

=€ +C

Example 5: Solve (1+y*) dx = (tany™—x) dy
Solution: The given equation is
(1+y?) dx = (tany —x) dy
_dx  tany™t—x
& Ly
Cdx _tany 1
Cdy 1+y? 1+y?
dx, 1 . _ tan”'y

X

— X = — 1
dy 1+y? 1+y° @
This is of the type
Xy px=Q
dy
-1
Where p = L 5 ,Q:tan 2y
1+y 1+y
Hence equation (i) is a linear differential equation
o 1f el
1
=ge Widy

=t
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The solution of differential equation (i) is
x(1.F.)=Q (1F.)dy+c
_ tan™ y 1
soXeetanTly = [——2-e™ Y. dy+c
y j1+y2 y
consider the integral
1
J‘tan 2y etan’ly dy
1+y
put z=tan™y

Differentiating with respect to z
1 dy

T1+Y? dz
" ! -dy=dz
1+Y?

jz-ez-dz

2 d .
:z-je -dz—(ja zje -dz} dz
= z-eZ—J.I~eZ-dz
=z-e" —¢
=e’(z-1)
put z=tan™y
= e (tan"y-1)

.. solution is given by

1 K]
X"V =e"™ (tany—1)+c

—tanty

o X=tan'y-1+c-e
This is the required solution.

Example 6: Solve

x(l— XZ)%—F(ZXZ —1) y=x

Solution: The given equation is
dy
X(1-x*)L+(2x*-1)y=x°
(12 ) g+ (2 1)y
=+ through out by x(1-x*) we have
d 2X2 -1 X3
-.—¥+( )y: a— )
dx  x(1-x*)"  x (1x?)
Hence equation (1) is linear in dependent variable y
This is of the type
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dy _
OIX+|oy—Q

(2x2 —1) 3
where P = x(l—xz)’Q_ x(l—xz)
o LF=el™

2x* -1
X(1-x)(1+x)
_£+ 1 1

x 2(1-x) 2(1+x)
(By partial fraction)

ef [‘i*ﬁ‘z@)}'d*

Let P=

L IF =
-logx+ %Iog(l—x)—%log(lﬂ)
-[Iogx«/ﬁ}
=€
o o]
1

IF =

Xy1—x?

Hence solution of differential equation (i) is

y (IF)=[Q(IF)dx+c

RRYE ! =J' X" 1 -dx+c
x1x? 7 (1-X7) x{1-x2
X
= - -adx+c
e
=—%.j(—2x)(1—x2)é dx+c
2\ h
1 9 i Y
2| -k
] L fn+1
{-[f A n+1

-y 1 +C
Uxl1-x 1-x

Sy =X+ oxy1- X

Which is the required solution.

Example 7: Solve



Which is of the type

d
_y+ py =Q
dx

g2

1 - _____
N

The equation (1) is linear iny

where P =

o 1F —el™
1
—=-dx
|LF.=e?*
Hence the solution of differential equation (1) is
y-(IF)=[Q -(IF)dx+c

_2\/;
Y-ezﬁ:j%-ezﬁ-dx+c

= jidx+c
Jx
y-e2% =2x +c
This is the required general solution.
dy

Example 8: Solve (1+ y2)+(x_etanfly). -

Solution: The given equation is

(1+ y2)+(x—e‘a“ly)-%

Which is of the type

& px=Q
dy



147

etan’1 y

1
where p = ,Q=
P y’ Q 1+y?

The equation (1) is linear differential equation

Hence

IF = e

1
N
— e 1+y? Y

IF =e™ ¥
Hence solution of differential equation (1) is given by

x-(IF)=[Q (IF) dy+c

. etan y .
Xetan y_J Z_etan y'dy+C
1+y
. eZtan’ly
XY = dy +Cevrrerrne. 2
| Y 2
put tan™y =t
g L ~-dy =dt
1+y

.. equation (2) becomes

1
x-e@y =Ie2‘~dt+c
2t

-1 e
x-e"V="—+4¢
2

put t=tan™y
e2tan’1 y

E
sxeeM Y =2 ——+4c
2

-1 -1
s 2x-e™ Y =e”™ Y ¢ where ¢, =2C
This is the required general solution.

Check your progress:

1) Solve

i) (2y+x*)dx = xdy
Ans:y = x*log(cx)
iy WY ey
dx 1-x

Ans : 2y = (1-x)(c? —x*)

dy 3
iii x> +1)- == =x3-2xy+X
) () y

Ans : (x2+1)y=§ +X?2+c
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Hint IF. = e &°

1

y= +c-ciF
1-x?
V) dx + xdy = e sec’-dy

Hint : LF. =¢’
x-e’ =tany+c

. dy i

vi xcosx-&+(cosx—xsmx)-y:1

Hint : LF. =

Sec x

Xy COSX = X+C
vii (x2+1)3-%+4x-(x2+1)2-y=1
Hint : If =(x2 +1)2
(x2+1)2-y:tan’1x+c
dy

viii (x+y+1)-&:1

Hint : LF. =¢”
X+y+2=c-€’

ix (x+2y°)-dy = ydx
Hint LF.= E

y
x=y’+cy

8.5 EQUATIONS REDUCIBLE TO LINEAR FORM

I) Bernoulli’s Equation :
The equation of the form
dy

ST =Qy

is called as Bernoulli's equations
=+ throughout by y", we get

L d .
"y -d—y+P-y1 = Q)
X
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Let y"" =u
., dy du
s (2en)-y " —=—
(1-n)-y dx dx
usin g equation (1) we get
1 du
.~ — - —+Pu=
1-n dx Q
du

d—+(1—n)- pu=(1-n) Q

X

This is Bernoulli’s differential equation and can be solved.
Note: The equation is also Bernoulli’s equation

We divide by x" and substitute u= x1-" and proceed.
Solved Examples:-

Example 9: Solve ﬂ+l =xe* - y?
dx X .

Solution:

ﬂJrX:xeX-yz ............. @

dx X

Which is of the type

d n

—y+ Py=Q -y"...

dx

Where pzl, Q =xe*,n=2
X

Equation (2) is Bernoulli's differential equation

= throughtout by y?, we get

" y'2-%+1-y‘1:x-eX ................. (2)
dx x

Put y'=u

Differentiating with respect to x
» dy du

LAlyt L=
y dx dx

L dy du

dx  dx
usin g equation 2 we get

Which is linear differential equation.
1

where p==,Q=-x-¢e"
X

L LE. =gl
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Hence, General solution is given by
u-(1IF)=[Q (IF) dx+c
u-lzj-xeX 1 dx+c

X X

Putu=y*

= —jexdx+c

1
M _1-_
Y X

1 x
—=—e"+cC
Xy
This is the required solution.

Example 10: Solve xy(1+ xyz)-% =1
X

Solution: The given equation is

which is of the type,
d—X+ px=Q -x"
dy

where p=-y,Q =y n=2

Equation 1 is a Bernoulli’s differential equation
= through out by x?, we get

2 X
'.x2~d—y—xl~y=y ......... (2)

Let x*=u
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equation (2) becomes

___u:3
dy y=Yy

BT
5

which is a linear differential equation.
p=y, Q=-y
o IF=el™

— e.(Y'dy

IF.— ¢/
Hence general solution is given by

u-(IF)=[Q -(IF)-dy+c
u-e” ='|'—y3- e%.dy+c

2
Let L=t

2
sy dy=dt
" u'e%z—IZt- e'-dt+c
u-e%z—z[t-e—et}c

2
Put u=x", t=¥4
-ey%:—z{y?z-ey%—ey%}+c
X-e)% :—yz-e)%+2-ey4+c
" E-ey%+y2-ey%—2-ey%:c
X

This is the required general solution.

1
Y
1

Check your progress:

i) solve:-
i) ﬂ—ytanx=y4secx
dx
Hint: If =sec®x
3
sec3 X f3tanx+tan®x=c
y
ii) ﬂ—xy:yz-ef%-logx

dx
Hint: IF. =e2
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1 ¢
—-e 4+x|ogx—x:c

iii) xy—%=y3.e'Xz
X

Hint' If = ¢
e y?(2x+c)

iv) xd— +3y = x“e%2 y?

ans y+x(x+c =1

V) 2xdx—y* (y*+x*)-dy =0
Hint : If =e_%

x? :c-ey%—y3—3

H dy X=Y [ aX y
vi ="V (e*-e

) goe (e -e)

Hint: IF=¢®
e'=c.e® +e -1
dy
— =2y(1-2x
dx y( y)
Hint :-L.F. =e*
1:(2x—1)+c-e‘2X
8.5.1 (I1) Equation of the type :
The equation fl(x)‘%+ p-f(y)=Q

Where P and Q are functions of x can be reduced to linear by substituting
f(y) =u and equation becomes
du

—+pu
d+pQ

Similarly the equation
dy
fr(x)-—=+pf(x)=
()dx+p (x)=Q

Can be reduced to linear by substituting f (x)=u
Solved Examples:-

Example 12: Solve siny ? =(1-xcosy)-cosy
X

Solution:

The given equation is

sin y-%z(l—xcos y)-cosy
X
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. sin dy _ - 2
: y:—=C0SYy—XCOS" Yy
dx

= throughout by cos®y, we get
siny dy cosy

: 20 Ay 2o X
cos’y dx cos°y

dy

.. Secy- tany-d— —SEeCY =—X.uou
X

which is of the form

f(y) oo+ ol (v)=Q

where f(y) =secy, p=-1. Q=-X
Letsecy=u
Differentiating with respect to x
dy du
.. secy-tany-—=—
y-any dx dx
.".equation (1) becomes
du
. —-—Uu=-X
dx

Which is a linear differential equation.
Where p=-1, Q=-X
o 1F—el™
= eix
I.LF=¢"
Hence General solution is given by
u-(IF)=[Q-(IF) dx+c
u-e” :J'—x-e’x- dx+c
= -Ix~e‘x~ dx+c
u-e™ =—[x(—e‘x)—1~e‘XJ+c
Put u=secy
s secy=X+1+c-¢e"
This is required general solution

Check Your Progress:

1) Solve :
1) %Jrltany:iztan y-siny
dx x X
Hint + throughout by tany-siny
1 1

- :—2+C
Xsiny  2x



i)

H int

Wy cos’ y =—xsin2y
dx

ﬂ+ x sin2y = x®cos® y
dx

=+ through out by cos®y
IF =e*
2tany =x*—1+c,-e*
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8.6 LET US SUM UP

In this chapter we have learned
Integrating factor for non-exact equation.
Using integrating factor find the solution of non-exact equation.

Using integrating factor find the solution of linear differential
equation.

R/
L X4
R/
L X4
R/
L X4
R/

L X4

Bernoulli’s equation.

8.7 UNIT END EXERCISE

Vii.
Viii.

Solve the following D.E:

Xi.

Xii.

Xiil.

Xiv.

XV.
XVi.

ﬂJr 4x y = 1
dx  (xX*+1) 7 (X*+1)°
dy 2 _ s

2+ x?y =X

dx y

dy (1-2x)
Rl A s RV |
dx x? y

(1+ y?)dx = (tan™y - x)dy

(x*+y*+1)dx-2xydy=0

(4xy + 3y - X)dx+ X(x+2y)dy =0
(x*+y®)dx-(x*+xy )dy=0
y(1+xy)dx+(1-xy )xdy=0

(2y? +4xy)dx+(4xy +3x® )dy =0

dy +(cotx)y = Cosx
dx

ﬂ + Yy secx = tanx
dx

(1+ x2)%+2xy-4x2 =0
X

tan-1

(1+x?) d

A,y gy
dx y
dy y
_+—:1_ﬁ
dx  (1-x)/x

Sec x dy = (y+ Sin x)dx
(ylog x-1)y dx=xdy



XVil.

XViil.

XiX.

XX.
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ﬂ+xy:x3y3

dx

dy , xy

4 P =y

dx 1-x° y%

y - Cosx % = y?(1- Sinx)Cosx

X

y dx+x(1-3x*y?)dy=0

*hKhkk
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APPLICATIONS OF DIFFERENTIAL
EQUATIONS

UNIT STRUCTURE

9.1  Objective

9.2 Introduction

9.3  Geometrical

9.4  Physical Application

9.5  Simple Electric Circuits
9.6  Newton’s Law of Cooling
9.7 Let Us Sum Up

9.8 Unit End Exercise

9.1 OBJECTIVE

After going through this chapter you will able to
X Use differential equation to find the equation of any curve.

*

> Use differential equation physics like projectile motion, S.H.M’s,

Rectilinear motion, Newton’s law of cooling.
R/

X2 Use differential equation in electric circuits.

9.2 INTRODUCTION

In previous chapter we have learn to solve differential equations.
We differ type. Now here we are going use differential equation in
different field its useful to geometrical, physical, and electronic circuits,
civil engineering and so on we are going to discuss few application of
differential equation.



156

9.3 GEOMETRICAL APPLICATIONS

Cartesian Co-ordinates:
Let f (x, y1) = 0 be the equation of the curve Let p (X1 y1 ) i.e. any point
on it.

» <

» X

(0, 0) T M N

The tangent and normal at p meet X [J axis in T and respectively.
LetPM W X [ axis

Let L[IMTP =Y
 LUOMTP =Y ... [Geometrical Construction]

Then,
_ _ (dy
Slope of Tangentatp =tan ¥ = [d—xj(xl,yl)

Equation of tangentatpis ~ y-Y, = (S—Zj(x -X,)

XU intercept of tangent = xl—yl(g—i)p
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dx
Equation of the normal at P is given by

y—y1=—[j—§j(x—xl>

y Cintercept of tangent = yl—xl(dy)P

2
6) Length of tangent = PT = y1 1+(3—Xj
y

2
7) Length of Normal at P=PN=y, 1+(:_y)
X

8) Length of Sub tangent _ dyly
()
dy
9) Length of Sub normal =y, - d_
X

10) If e is a radius of curvature at p then

) 3
2
{1+(dyj}
d x
d’y
d x?

Solved Examples:

e=

Example 1:
Find the curve which passes through the points [ 2, 1] and [ 8, 2]
for which sub tangent at any point varies as the abscissa of that point.

Solution: Let p (x y ) be a point on the curve

We know,
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_Y
subtangent = dy
dx
From given condition-
Y
dl o X
dx
Yk [k = constant]
dy
dx
dy
=kx—
Y dx
1 dx = K dy
X y
k dy_1 dx
y X

which is in variable seperate form
integrate both side

k.f 1 dy + constant
y
k. logy =log x + log ¢
. log yk:Iog(cx)
k
~Y o= (€X).rvenn(1)

The Curve passes through the points [2,1] and [6, 2]
putx=2, y=1, inequation [1]

-1 =2c
~1=2c

1
LC=Z
2

putx= 8, y=2,ineq" [1]
.'.2k:0x8
k 1 4
==X
2~ x8
2°=4
k 2
29'=2
K= 2
put Value of C and K ineg  [1]
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This is the equation of the Curve

Example 2:  Find the curves in which the length of the radius of
curvature at any point is equal to two times the length of the normal at that
point.
Solution: Let p [x, y] be a point on the curve

We Known that,

Radius of curvature =

2
Lenght of normal =y, [1+ (—j

.. From given condition -

(e

d’y X
dx?
2 1/2 2
{1+ (yj } ° {1+ (d)/j } 112
dx X dv
Ly =25 {1 (d—yn
X
dx?
2 2
1 (YY) -5 e OY 17
dx 2
Let ¥ =
dx
@y _ i(d_yj
x*  dx\dx
d
= —(z
(2
dz dy
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dy e
Cdx? dy

Fromeq" (1)

S 1+2° =25 z-%

dy

22y~% =1+27°
dy

2z 1
" -dz=—-d
1+ 72 y Y

which is in variable separable form

.. Integrate both side

2z 1
: I1+22 dz—J‘y-dy constant

-~ log (1+z*)=logy + log c

- log (1+2°) =log (cy)

1+z° =cy
7 =cy-1
z =,jcy-1
dy

Againputz = —
dx

M d_y = -
" a/cy 1
1

) Joy-1

This is in variable separable form

dy = dx

.. Integrate both sides

i EJ' cl
et Joy—1
" %-Za/cy—1:x+cl

-dy = I dx + constant
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" Za/cy—l =CX +CC,
2«/cy—1 =cx+c,

Where c, = cc,

which is the eq" of the curve.

Check your progress:

1) Determine the curves for which sub normal is the arithmetic mean
between the abscissa and the ordinate
[ Hint :
dy _ X , ¥ . oo
y — = — + = ; simplify
dz z z

Equation is homegeneous.

Ans: (x+2y) - (x+y)2 =c

9.4 PHYSICAL APPLICATION

Rectilinear Motion:

It is a Motion of a body of Mass in start moving from a fixed point O
along a straight line OX under the action of a force F. Let p be the position
of the body at any instant

Where OP = X, then
. dx
1) velocity v= —
) y ™

2) The acceleration = ((jj—\:

_d?x
N a
o av
=V —
dx |
By chain rule -
dv_dv dx
dt dx dt
dv
=—"-V
dx
dv
=V -—
dx

3) Newton’s second law of motion is given by
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f=ma
dv
= m_
dt
_ o d’
=m-—
dt?

f=mv.—
X

where f = effective force

D’ Alembert’s principle:-
Algebraic sum of the forces acting on a body along the given direction is
equal to the product of mass and acceleration in that direction.

) d?x
iem—-=2F
dt? 2

d?x
o 2F-m—-=0
dt?

Solved examples:
Example 3:

A moving body is opposed by a force per unit mass of a value CX and
resistant per unit mass value bv, where X and V are the displacement and
velocity of the particle at that instant. Show that the velocity of the
particle. If it starts from rest, is given by.

V2 L(l_esz)_c_x

T op? b
Solution: Consider the motion
Step 1) :

Let m be the mass of the particle moving to right. Now the opposing
forces mex and mbv2 will act to the left.

dv
MCX ¢——MV-—

dx

mbv? «——
ie Jmcex and Cimbv2 are forces to the right
By D’ Alembert’s principle
mv~g—:(/ = —mcx — mbv?
step[2]
dv

s V—+bv? = —cx——[1]
dx
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Letv’ =z
2v-0|—V = g
dx dx
-.eq" [1] becomes

1 dz
—-—+bz=-cx
2 dx

dz

. —+2bz=-2cx
dx

which is a linear equation in z

oo p=2b. Q=-2cx.
S1F =™
[ 20ax
=e
LF.= @™

Its general solution is given by

z[IF]:I Q- (IF) dx+constant
o I(-Zcx)eZb’(-dx+cl

~.z@
= -2 [x-@™" dx+c,
= -ZC-[xjesz-(dx-jc;j—nx J.emx-dxﬂ+c1

2bx 2bx
= -2C- x-e—jl-e—dx +C,
2b 2b

2 2x _ 'CX'emX+ C  2x
V e b 2b2 e Cl

C -2bx
V = —F+2—bz+cl'e —)[3]
[l to find ¢, , we impose initial conditions

ieforx=0,v=o0ineq" [3]
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0:0"’2%2”01

C

1 2p?

put values of g, ineq" [3]

vi=— XL L i.e‘ZbX
b 2b? 2b?
C 2 — c “2bx CX

Example 4: A body of mass m. Falling from rest, is subject to the force
of gravity and an air resistance proportional to the square of the velocity

[ie kv2 ]. If it falls through a distance x and possesses a velocity v at that
instant show that

2
2k—leog[ a j,wheremg:ka2

m a’ -V’

Solution:

Step :1

Let the body of mass m fall from ‘O’

The forces acting on the body are

1) Its weight mg acting vertically downwards.

2) The resistance kv2 of the air acting vertically upwards.
The net forces acting on the body vertically downwards
=mg0 kvZ ....[mg0 ka2 given]
= ka2 [ kv2

= k[a20 v2]...... [1]

Step [ 2] By D’Alembert’s Principle
dv

mve— = k(a® - v?)

\Y k
" -dv = —-dx
a’—v? m

This is in variable separable form
Integrating both sides



165

Step [ 3] To Final cq , we put initial conditions
iewhenx=0,v=o0.
= From (2)

1
L loga®=c¢,

put value of c1 inegn [2]

1 k 1

. —=log (a®-Vv?*)=—x—= log a®
2 g( ) m 2 g
1 k 1

. —=log (a®-Vv?*)=—x—= log a®
2 g( ) m 2 g

— log (az—vz):%— log a>

2

~ log @’ - log (a®-v?)= -

LA log il
" m a?-v?

Check your progress:
1) A particle of Unit mass is projected upward with velocity u and the

resistance of air produces a [ retardation kv2 and v is the velocity at any
instant show that the velocity v with which the particle will return to the
point of projection is given by

1_1.k
vvioout g
2) Determine the least velocity with which a particle must be

projected vertically upwards so that it does not return to the Earth. Assume
that it is acted upon by the gravitational attraction of the earth only.
Ans : Least Velocity vo=,/2gR
R = Radius of earth

3) A paratrooper and his parachute weigh 50 kg. At the instant
parachute opens. He is Travelling vertically downward at the speed of 20
m/s. If the Air resistance varies directly as the instantaneous velocity and
its 20 Newtons. When the velocity is 10 m/s Find the limiting velocity, the
position and the velocity of the paratrooper at any time “t”.

v=5 [s—e'gm} ...=25mfs

X :5{st+ 25 e'gm} +C,
g

o 125 _
x=25t- 1™
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9.5 SIMPLE ELECTRIC CIRCUITS

The following Notations are frequently used. Units are given in Brackets .
t (seconds)——Time

q (coulombs)——Charge on capacitor
i (ampere)——Current

e (volts)——voltage

R (ohms)——Resistance

L (Hentries)—> Induatan ce

C (Farads)——capaci tance
.. Current is the rate of electricity
. _dq

dt
[11] Current at each point of a network is got from Kirchhoff’s laws :

1) The algebraic sum of the currents into any point is zero.
2) Around any closed path the algebraic sum of the voltage drops in
any specific direction is zero.
3) Voltage drops as current i flows through a resistance R is Ri ;

: : o di . :
through an induction L is La and through a capacitor C is LY
c

Solved examples:

Example 5: A constant emf E volts is applied to a ckt. containing a
constant resistance. R ohms in

series and a constant inductance L henries. It the initial current is zero,
show that the current builds upto half its theoretical maximum

L log2

in seconds.
Solution:
Step (1) R
WA e
Eo4 = ‘

Let i be the current in the circuit at any time ‘t’ .

The by Kirchoff’s law, we have
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di

E=L-—+Ri
dt
" Lﬂ+ Ri=E
dt
dt L L
Which is a linear equation in i .
R E
nP=—= =—
L Q L
L 1F =l
:ef%dt
R
IlLF.=et

.. The general solution is given by
1.(IF)= J'Q ( IF )-dt + constant

R R
i.eLtz_[E-eLt-dtJrc
L

Ry
— L

-e- +C

1
+C

o O =

i.ek =—.e

E

L
B/[ E

R

i E ﬁ.t
" I:E +cet —> (2)

To find ¢, we impose initial - conditions
le.at t=0,i=0

_E + C

R

.c=- =
R

. Equation (2) becomes
E _R. t
e

L

o|lm x;o|m

R
(1—e‘it]—> (3)

This is the expression for i at any time t.

o, . .
increases and its maximum

o

Now ast increases decreases e
. E
value is —
R

Step (2)
Let the current in the circuit be half its theoretical maximum after a
time T seconds then.



_R
Fromegn (3) %%:E{l—e“j
’ lzl—e_%t
2
" ef%tzl—l
2
1
——-t=log =
L g2
-Iogl
2
=logl — log 2
=0 -log2
R
+—-t=+log2
3 g
Ct= L-log 2
' R

Check Your Progress:

1) The equation of the eml in terms of current i for an electrical
circuit having resistance R and a condenser of capacity C, in series is.

E=Ri+[~-dt
C
Find the current i at any time t, when

E = Eo sin wt

~t
Ans : i= &COS (Wt — @) +c,-eR°

1+R*C*W?
-1
where ¢ = tan (RCW)

2) An electrical circuit contains an inductance of 5 henries and on

resistance of 120 in series with an emf 120 sin (20t) Volts. Find current if
it is zero when

t=o0;att=0.01

Ans: —22_.112sin (0.2) — 100 cos-(0.2) + 100.e—
10144 125

9.6 NEWTON’S LAW OF COOLING

The law states that the rate at which the temp of a body changes is
proportional to the difference between the instantaneous temp of the body
and the temp of the surrounding medium.

If Q is the instantaneous temp of the body an Qo the temp of the
surrounding then.
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@Q a_
o “(Q-Q)
dQ _ 3

dQ

Where k is a constant and Q decreases as t increases i.e.a IS negative

hence negative sign is added.
Solved Examples:

Example 6:  The temperature of the air is 300C.and the substance cools
from 1000C to 700C in 15 minutes, find when the temperature will be
400c.
Solution:

Initially at t =0, T=100

~. log (100-20)=0+c,

-.¢,=log 80

Put value of ¢, ineq" (1)

= log (T—20) =—kt+log 80
. kt =log80—log (T-20) — (2)

Whent=1, T=60°c

-, from (2)

k=1log 80 — log 40— (3)

Divide eq" (2) by (3) we have

. log80—log(T —20) .(4)
log80—1log 40

when t =2minute, T =?

from eq" (4) we have

Iog( 80 j
o _ \T-20)

o (2]
40
80
T-20
80
T-20
4T —80=80
4T =160
40
-1
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.. The temp of the body at the end of second minute will be 40°c
Check your progress:
Q) A body at temperature 1000 ¢ is placed in a room whose temp is
200¢ and cools to 600 ¢ in 5 minutes. Find its temp. after a fruther interval

of 3 minutes.

Ans - 46.40 ¢.

9.7 LET US SUM UP

In this chapter we have learn Application of Differential equation like-
<> Geometrical Application:- like to find the equation of curve
the equation of normal.
<> Physical application: 1) Rectilinear motion.
2) D’ Alembert’s Principle.
In electronics Circuits.

Newton’s law of cooling.

R/
L X4
R/
L X4

9.8 UNIT END EXERCISE

. . . . +3
. Find the equation of the curve whose slope is equal toy— at

X+2
every point of it and which passes through the point (0,0).
ii. A curve passing though (3, 0) has as gradient% at this point such
2

that at every point on it 3—2’ = X . Find the equation of the curve.
X

and the curve

2 -
iii. If the slope of the curve at any point is ylogx-y
X

passes through the point (1,1). Find its equation.
iv. The curve i in an electric circuit containing resistance R and self-

inductance satisfies the differential equation L%+ Ri = E Sin.wt where R,

E & W are constant. If i=0 find the current at time t.

V. The change 6 of a condenser, capacity C, discharged in a circuit of
resistance .R and self-inductance .L satisfies the differential equation
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2
?ij+ R%+g: 0 Solve the equation with initial conditions that =0
c

: %:Owhen t=0,andCR* <4L.

L

Vi. A radioactive substance decomposes at the rate proportional to the
amount present at the time. How much mass will be left if initially a
substance 2mg is supplied.

Vii. The Newton’s Law of Cooling states that the rate of cooling of a
substance is proportional to the difference in the temperature of the body
and that of the surrounding is 20. If water cools down to60 in first
20minutes, during what time will it cool to30" ?

viii. If L%: 30 Sin 10711t find i in terms of t given that L=2 and i=0, at

t=0.

*hkkkik
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SUCCESSIVE DIFFERENTIATION

UNIT STRUCTURE

10.1 Objective

10.2 Introduction

10.3 Some standard results

10.4  Type llI: Using Complex Numbers
10.5 Problems

10.6 Let Us Sum Up

10.7 Unit End Exercise

10.1 OBJECTIVE

After going through this unit, you will be able to

Find higher order derivative
Formula of nth order derivative
Leibnitz’s theorem

Application of Leibnitz’s theorem

10.2 INTRODUCTION

In this chapter we shall study the methods of finding higher

ordered derivatives for a given functional expression.

This is done in two stages:

Stage |

problems using these results.

Stage Il : We shall prove Leibnitz theorem and using it find higher order

derivatives of given function

Notation:- Different notations used for derivatives of y=f(x) with respect

to x are

....... (Due to Lebinitz)

: We shall establish some standard results and solve some
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Y, ¥, Y, (Due to Newton)
f(x), f(x),...f"(x) (Due to langravge)

For convenience we also use notations
YoV oY OF Y Y Y L HC,
(Y, ), =value of ™ derivative of y at x=0

Stage (1)

10.3 SOME STANDARD RESULTS

(1) Let

(2) Let
y — amX
y,=ma™ (loga), y, =m’a™ (loga’).......

n 4 Mx

y,=m"a™ (loga)"

3) y =sin(ax+b)

y, =acos (ax+b)=asin{%+(ax+b)}

y, =—a’sin (ax+b)=a’sin {2%+(ax+b)} .......
y, =a"sin {(ax+b)+n7”}

If a=I then

y=sin(x+b) and vy, =sin{(x+b)+n§}

Also if b=0 then y=sin x and y, =sin {x+n7ﬂ}.

4)If y =cos(ax+b) then onsimilar lines  (m>n)

0 nz
y,=a cos(ax+b+7j
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y =(ax+b)" (m>n)
y, =ma(ax+b)"" (m is integer)

y, =m(m-1)a® (ax+b)™"

Yo =m(m-1)(m2)..... (1) & (ax+b)"™
y, =n(n-1)(n-2)....1a"(ax+b) =nta"

If m=n then
If a=1, b=0, then y=xN

6) y =(ax+b)" (m is positive integer )

Yo =
=(-1)m(m+1).....(m+n-1)a" (ax+b) "
1
7 =
) y ax+b
y, = — 2 =—a(ax+b)”
. (ax+b2
L (-1)*a%2
yz—(—a)a(—Z)(aXer)B:( ) — .
(ax+b)
(-1)"nta"
= if a=1 then y=———.....
Yo (ax+b)n+l P
-1)"n
yn: ( ) n+l
(x+b)

8) y =log(ax+b)
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@ (e (<)ta

2T axsb)  (ax+b)  (ax+b)
()"
Y= (ax+b)"
9) y =e™sin(bx+c)

y, =e*[asin(bx+c)+bcos(bx+c)]

Leta = rcosa,b = rsing,

And .. r=y/a?+h? a:tan'l(EJ

a

y, =e*[ rcosasin(bx+c)+rsinacos(bx+c) ]

=re™[sin(bx+c+a)]|
Y1 = (a2 +b? )% e™sin {bx+c+tan'1 (Eﬂ
a
similarly it can be proved that

Y, = (a2 +b? )% e™sin {bx+c+tan'l (gﬂ ........

Yo = (a2 +b? )% e™ sin {bx+c+tan'l (Eﬂ

a
If a=1,b=1, c=0

y =e*sinx

Yo = 2% ¢* sin{x+n7”}

y =e™cos(bx+c)

y, =(a* +b2)% ™ cos((bx+c)+ntan‘1 gj

Type |

Examplel: Find nth derivatives of the following :

i) sin®x

i) COSX C0S2X C0S 3X
iii) y =€e” C0S X CO0S 2X
iv) y =e**“ cos(xsine)
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Solution:
i) Lety =sin® x:%(3sin X —sin 3x) sin3x=3sinx-4sin’x
4sinx = 3sin x —sin 3x
sinsx:% [3sin x—sin3x]
Using the result for nth derivative of y=sin (ax+b) and nothing that

nth derivative of sum or difference is sum or difference of nth derivatives,
we get

Y, 1 3sin(x+ nfj—B” sin(3x+n—”j
4 2 2

i) Let

y=COSXCOSZXCOS3X=%COSZX[COS4X+COSZX]
1 1 1
=E-cost-cos4x+§-cost-cost CACBZE(CMB-‘FC#E,)
=1-l-[cosz+c032x]+1-l[cos4x+coso]
2 2 2 2
1 1 1 1
:Z[cosx+cost]+Z+[1+cos4x]:Z[cosz+cost]+Z[1+cos4x]

= %[cos 6X+C0s4X+C0s 2X +1]

ynzl 6" cos| 6x+ % |+ 4" cos| 4x+ % |+ 2" cos| 2x+
4 2 2 2

e”
iii) y= €*cosxcos2x= - [cos3x+cosx |

:%[ex cos3x+e* cosx]

[Using the result for nth derivative of y=e8X cos (bx+c)
y, = %{(10)% ¥ cos(3x +tan™ 3) + (2)% -e* cos(x + n%ﬂ iv)

XCosax

y =e*“*“ cos(xsina)
[Here note a=cosa, b=sina, c=0]
)% gxeosa

~ Y, =(cos’a +sin* &

LY, =e

cos[xsin a+ntan™(tan a)]

XCosa

cos(xsina +na)
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Example2
If y=sin px+cos pxt,thanshow that :y = p" [1+(—1)n sin 2px} ?
Solution: ..y =sin px+cos px

y. = pnsin(px+n7”j+ p”cos(px+n7ﬁj (Results:3,4)
=p" sin(px+n—”j+c05(px+n—ﬂ]
2 2
=p" sin( x+n—ﬂj+cos( x+n—”j 2
=p p > p >
nz nz %
= p”{1+ Zsin(px+7)-cos(px+7ﬂ

look at simplification: (a+b)= {a+b) =[a+ b)z]ﬂ

%

= p"[1+sin(2px+nz) ]}/ [ 2S,C =S,4]
=p" [1+(—1)n sin2 px}y [ Saus = SaCq +C,S; |
sinnz=0
and
cosnx =(-1)"
Example 3: If y=(x—1)"than show thaty+ yl+ﬁ+ Yoy da gy
TR TR T
Solution:
y=(x-1)’
Yn :(X_l)n_l
Y, =n(x-1)""

y, =n(n-1)(x-1)""

Yo=n!

y+yl+ﬁ+y3 ..... Yo

21 3! n!

:(x_l)n+(X—1)n71(l)+ > (X—l)”’2+ ...... m

= (x1)"+n(x-2)"" (1)+
- [T

- (1)
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[(a+b)n =a"+na""b  (Note: See Binomial expansion)

-1

+Ma"*zb2 +....0"
21

Hence a=x—1,,b=1]

Type Il

Find nth derivatives by method of fraction :
X

(xD)(x-2)(x-3)

Example 4: Find nth derivative of y=

Solution : Using method of partial fraction
_ X
Y= x—D)(x-2)(x-3)
X A B C

(x—D)(x-2)(x-3) (x-1) (x-2) " (x-3)

X _ A(x-2)(x=3)+B(x-1)(x—3)+C(x-1)(x—2)
(-2 (9 D (2)(x-3)

s = A(X-2)(x—3)+B(x-1)(x—3)+C(x-1)(x-2)
Put x=1 Putx=2 Putx=3

A= Bop 3
2 2

gl 12 31

YT ) (x-2) 2 (x3)
1(-1)"n! ~-1)"-n! 3 I

'.'yn:_( )n+l _2( ) n+1 +o n n+1
2 (x-1) (x-2) 2 (x-3)

10.4 TYPE 11l : USING COMPLEX NUMBERS

Example 5: Find nth derivative of ~ y=— L

X% +a?

Solution.:
1
x—ai)(x+ai)

We have y= (

By partial fractions,
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11
y_2ai(x—ia) 2ai (x+ia)

-1)"n!
Using result (7) Y, _1 (Yt 1 1

= 2ai (x—ia)m _E (X+ ia)n+l
_(Y '”!{ 11 }
2ia | (x—ia)"" (x+ia)™

To eliminate, we substitute

X+ia=-r-e? . x-ia=r-e"
(1) Becomes,
_(=Y)"ny 1

~ 2ia (re—G )"*1 B (rewi)””}

(—1)" -n! _ei(ml)e . e—i(n+l)€:|

2ia-r"™
(_1)” .n! _ei(n+1)9 _ i _ Qi(n 0 _ g-ins1)o
= n+l Sin = R
ar | 2i 2
(-1)"-n!
= -sin| (n+1)8
y” arn+1 l:( ) :I
r=Ja?+x%,0=tan
Example 6: Find nth derivative of  y=— X 5
X*+a
Solution.:
We have y= - X .
(x—|a)(x+|a)
ia —-ia

(x—ia)(2ai) " (x+ia)(-2ai)

yzé{(x—liaf(xjia)}
l{ (=1"nt (—1)”-n!}

2| (x- ia)n+1 (x+ ia)n+1

Let x+ia=re'? x—ia=re™’

Sy, =
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4
TR oot

(-1)"-n! 1
From yn - 2 ‘: N+l —i(n+1)60 rn+1 . ei(n+1)0:|

1
:(—1)”.n[ S il }

n+1
r

-'-yn=(_i cos[ n+1‘9}

r=\xt a2, tan"¥

Example 7: Find nth derivative of tan-1 x
Solution.:
y=tan"x
1 1
X+l (x=i)(x+i)

Y. =

:i{( 1 )_( 1 } is(n-l)Ih derivatives of y,, we have

2i X+i)
y =+ ()" (n-1)! (-1)" (n-1)!
LAl (x-iy (X +i)'

=(—1)“(n—1)!{ 11 }
20 [(x=i) (XY
Let x+1=re’, x—-i=re™"

1
r =«/1+x2,¢9=tan(xJ

- yn—(_l)nl(n_l)![ P ]

)
y = ()" -En -1) !{eine ;?_m}

r

Lgn_l)!sin(ne)

r

roo=vJx’+1 9:tan_1(1j
X

where =
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-1
cos‘l[ 1]
Example 8: Find nth derivative of : X+ X
Solution. :

X—x"
cos™ —
X+ X
-1
y=cost| 22X
X+ X"

L x*-1
=CO0S >
X“+1

X=tané
y =cos ™ (—cos26)
=cos ™[ cos(7+26) ]

=r+20
=+ 2tan"" x, from previous result.

()" (n-2):

Yy, =2———>""sinna
r
d?y dy

Example 9: If y=sinx (sinx), Show that Fﬂan x-d—+ ycos®x=0
X X

Solution: y =sin(sinx)

—z = cos(sin x)cos x
d’y . . .
g =S (sin x)cos® x —sin x-cos(sin x)

2
d—i’ +anx Y +ycos’x
dx dx

= —sin(sin x)cos® x —sin x-cos(sin x)

+tan x.cos x.cos(sin x) +cos” xsin(sin x) =0

d’p a’h’

sz p3

Example 10: If p? =a®cos® @+b’sin® @, Prove that p+

Solution.:
Diff. given relation twice,

Zp:jj—g =-a%2cosd sin@+2b”sin @ cosd
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dp /1o o)\
p@—(b -a%)sing cosf—————————————— )

dzp dp 2_ b2-32 2 a2
WJ{@) _( -a )(cos 0 —sin 0) .................... (2)

d2p (b*-a®)sin® @ cos’6

Vi > =(b*-a*)(cos’0 —sin’0)

p

p3%+ p*(b*-a”)(cos’@ —sin’0)—(b*-a®)sin® & -cos’0

:(bz-az)[pz(cosze —sin’g)—(b*-a* )sin’ ¢ -cosze]

:(bz-az)[(azcosze +b’sin’0)(cos’0 —sin’6)—(b*-a*)sin’ 0 -cosze]
=(b*-a*)| a’cos’d —bsin‘0 ]

=a’h’ (cos' +sin*@)—(a'cos'® +bsin'0)

= a’b’ [(coszﬁ +sin26?)2—23in29 -cosze}—(a“cos“& +b'sin‘0)

- a’h’ —(azcoszé' + bzsinze)

— a2b2 _ p4
d2
p3 d_eg —a%h? - p4
o+ d’*p _ a’b’
d62 p3
Example 11: If y=sin™ 1+23.|n X then show that & \E
2+sin X dx 2+sinx
Solution.:
We have
. 1+2sinx 2sinx+4-3 3
Slny: - = - =2 :
2+sin x 2+sin X 2-sin X
dy 3C0S X
. COSy —— = ————
dx  (2+sinx)
Now cosy =(1-sin y)}/2

(2+sinx)2
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_ {(2+sinx)2 —(1+23inx)2 r
(2+sinx)2
J3cosx

24+sinx
dy ~ 3cosx 1
dx (2+sinx)2 cosy

3cosx  (2+sinx)

- (2+sin x)2 J3cos x

B3

2+sin x

Check Your Progress:
1) If y=xeY then show that :

a0 =-n(2]

dx

2) If y=(1—x2)%-sin’l x, then show that :3)
(1—x2)3—3x%+2x+y:0

[Hint :subx=sing. ..y=cosé

dy dy dé

Y ]

3) If y=(sin* x)2 then show that:

2

(1—x2)u+xﬂ—2:0

find

dx*>  dx
. dy N 1
Hint:— =2sin"" x-
| dx 1+ %
d 2
- (1- xz)(—yj =4y, differentiate again|
dx
4) If y=xe’, then show that:
d’y dy )’
1-y)—2 =(2-y)| X
-9 -2

[Hint: Take log]
5) If my =sin(x+y)
show thaty, =—y(1+ y1)3 , M is constant

6)  Find nth derivative of sin®x-cos® x
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10.5 PROBLEMS

Type (1) :

In this type of problem we have to chosen one function as u and the other
as v. If there is a polynomial in x then that is to be chosen as u and then
apply Leibnitz theorem.

Example 12: Find nth derivative of x%e* cos x
Solution:

Let y=(x")(e*cosx)
U=Xx?V=e*Ccosx.

Using standard result number
Yo = 22 cos(x+n7”j.

Here y=u-v
By Leibnitz theorem
y, =Uv, +ncu\V, ; +NCUV. , +........

= X2 {2“%* cos x[x+%‘ﬂ+ n(ZX){anlex cos(x+@ﬂ

-1 (2).[;22 e COS[”L;Z)”H

2!
Example 12:1f f(x)=tan x then show that

fn (0) _n czfnfz (o)ﬂ +" C4f"—4 (o) ...... =Siﬂ(n§)
Solution: cosx- f (X)=sinx

Taking nth derivatives both sides to the left side we apply Leibnitz
theorem and to the right we use standard formula for nth derivative of
sinx, we get,

nz

cosx.f"(x)+,C,—(sinx) f"*(x)+"C,(—cosx) f"?(X)+...... =sin(7j

Example 14: If y= logx then show that :
X



Solution:

()" (n-1)n

By standard results we have u, =

-1)"-n!
Vn = ( )n+1
X
We have y=u. v
By Leibnitz theorem

n n
y,=uv,+ Cuv. , + CuV, ,+.... +U,Vv

(-1)".n! 1(-2)"(n-L)n n(n-1)

=log x- N +n; = + T X
n n-1
:Iogx-(_l)l'n!+n1(_1) (n—l)n+n(n—1)x
X" X X" 2!

(-1)" .n! ( 1.1 1)
=7 |logx-|1+=+=+...+=
Yo X" 9 2 3

n

n

Example 15: If I, = j - (x” -log x) then show that
X

n

(i) I, =,1,,+(n-1)! and

(i) Inzn![logx+1+%+ ..... +1}

n
Solution:
. d" /| d"t [ d, ,
(i) We have |, = e (x"-logx) = v {&(x log x)}
_ %[nx“ log x+ X" ]
dnfl . dnfl .
=n Ve [x '.log x]+ v [x 1]

I, =nl+(n-1)!

[if n™ derivative of X" is n! therefore (n-l)th derivative of x"lis (n-l)!}
ii dividing (1) on both sides by n!
I, nl (n-1)

n__nd 4

n! n! n!
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I I

1.e. m:(n_l)!+ﬁ
Re placing nby (n-1)(n—2)............ 3,2,1we get

by _ 2, 1
(n-1)! (n-2)! (n-1)

Lo s 1
(n-2)! (n-3)! n-2

L_L.1

21 1 2
L = L +1
11 0!
Adding all the results columnwise we get,

L, L. ) L.L

n!+(n—1)!+(n—2)! """" METRET

1n—l 1n—2 £ £
_(n—l)!+(n—2)!+ ....... +2!+O!

cancelling common terms on both sides and noting that

I, =0" derivative of x° log X

=log x
and 0!'=1we get
[, =n! {Iogx+1+1+l+ ....... +1}
2 3 n

Example 16: By forming in two different ways the nth derivative of x2n
show that :

> n?(n-1)" n?(n-1)(n-2)’ 2.)!
1+1—2+ 12(_22) + (12 2)2 (32 ) +%
z (n)
Solution:
Step 1: We have
y=x" Standard formula

Y, =(2n)(2n=1)..ccc(2n =N+ 1) x>

~ [(2n)(2n-1).......(n+1) ][ n(n=1).....3,2,1]x"
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|
@),
n!
Step 2: Again y=x"= x".x

We apply Leibtnitz theorem to find yp,

n

u= X" ,v=x"
u,=n! v, =n!

" Y, =X"-nk"C (nx™ ) (nlx) +

I 2 n2(n=1)
—(Z:I) X" =x".nl 1+ 22 nl(znzzl) + }
n2 n?(n-1)° n*(n-1)°(n-2) (2,)!
"Mty 12223 ~(nYy
2% n)
Note :

The nth derivative of x" is n! but (n-1)th derivative of x" is not (n-1)! but
nl .x.
To prove that this use the formula No.5 and put m = (n-1).

Type (11)

In this type of problems we (generally) proceed according to the following
flow-diagram:
First express y in terms of x

|

Differentiate both sides with respect to x and simplify

¢

Again Differentiate both sides and simplify

|
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Then apply Leibnitz theorem term by term and simplify to get the result.

1 1

Example 17: If ym+y m=2x Show that
(X*=1) Yo +(20+1) xy,, +(n* —=m?)y, =0
Solution:
y}/m + y_%1 =2X
y%n + ; =2X
y/m

2 1
(y%“) —2xy™ +1=0

is a quadratic equation in y}/m

y%” _2xt\4x* -4

2
y%1 =x+x2 -1 (neglecting negative sign )

y=(x+ (x2 —1))m

=l ) (1ﬁ]
(x+ (xz—l)

(x*-1)

S—

Y, = m(x+ (x2 —1))m
A —1-y, = m(x+ (x* —1))

=m-y

(X2 =1)y? =mPy?
Differentiating both the sides with respect to x, we get,
2(x2 —1) Y, Y, +2xy?, —2m?yy, =0

-1
-1
m

‘. (x2 —l) Y, +Xy,—m?y =0

Applying Leibnitz term by term to find n™ derivative we get,

(x2 —1) Yoo +N(2X) Y, +n(n_—1)(2) Yo |+ %na+n(1)y, ]-m?y, =0
2!

(¥ =1) Y., +x(20+1)y, . +(n*=m’)y, =0
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Note : If we consider negative sign, we shall get the same result.

Example 18: If we cos™ (%) =log (5) then Show that
n

Xzyn+2 +(2n +1) Xyn+1 + 2n2yn = 0

Solution:
We have

cos™ % =nlog(logx—logn)"’
y =bcos[nlogx—nlogn]
y, =-bsin[nlogx—nlog n](gj

Xy, =—nbsin[nlog x—nlogn]
differentiating both the sides with respect to x

Xy, +y, =—nbcos[nlog x—nlogn]- (;j

X?y, + Xy, =—n?[ bcos(nlogx—nlogn) |
=-n’y
X’y, +Xy, +n’y =0
Applying Leibnitz theorem term by term to differentiate n times, we get,

n(n-1
{xzyn+2 +N2xy, ., +(2—|)(2) yn}f[xynﬂ +n(1) yn:l_ n’y,=0

XYy, +X(2n+1)y,,, +2n’y, =0

sin™* x
then show that

Example 19: It y= /1_)(2
(l_ X2) yn+2 _(Zn +3) Xyn+l _(n +1)2 y” = O
Solution:
We have

sin™t x
y - 2
V1-x
(1— X2 ) y’ = (sin’1 x)2
Differentiating with respect to both sides,

sintx

1-x° 2y

(1—x2)2yy1 —2xy* =2
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(1_X2)y1_xy:1
Differentiating with respect to x
(l_xz)yz —2xy,—xy,—y=0
(1—x2)y2 —3xy, —xy, —y=0
Applying Leibnitz term by term, we get
n(n-1
|:(1_ XZ) yn+2 + n(—2X) yn—l + ( 2| ) (_2) yn:|
_3[Xyn+1 +n-1. yn]_ Yo = 0
(1_ X2) Yoz — X(Zn _3) Ynu _(n +1)2 Yo = 0
Example 20: s y = sec™' x then show that

X (¥*=1) Y, +[ (2+3n) X’ =n+1] y,, +n (3n+1) xyn+n?(n-1) y, -1=0

Solution:
y=sec X
Differentiating with respect to x
B 1

M

x*(x*-1)y* =1
ie. (x'-x*)y% =1
Differentiating with respect to x

(4x3 —2x) 2 +(x4 —x2)2y1y2 =0
ie. (2x2—1)y1+(x3—x)y2 =0
ie. (xs—x)y2+(2x2—l)y1:0

Differentiating term by term n times using Leibnitz theorem, we get,

[

A2, |

3!

j{(Zx2 —1) Yo +N(4X) Y, + n(r;l—l) (4) ynl} =0
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i.8.(X° = X) Y., +n(3x* =1)(2x* ~1) y,,,, +[ 3n(n-1) x+4nx ]y,
+[n(n-1)(n-2)+2n(n-1)]y,, =0

iexX(X* 1) Y,., +[ (2+3n) X =(n+1) |y,,

+n(3n+1)xy, +n*(n-1)y,, =0

Example 21: If y=tan™x,then showthat.

(X*+1) Yy, +2nxy, +n(n-1)y, , =0and also show that

¥, (0) is O, (n-1)! or 4r+3 respectively

Solution:
Step | :
y=tan™ x
1
nEIe
(x*+1)y, =1
Applying Leibtnitz theorem to differentiate n times, we get,
n(n-1
{(x2 +l) Yo +N(2X) Y, + ( 5 )(2) ynl} =0
ie. (X2 +1) Yy + 2%y, +0(N=1) Y,y = 0o
Step (11) :
Now, y;(0)=1
—2X
And y,(0)= —~
(1+x )
Putting y, (0)=0
n=23456in (1)
Yy =—2=—(-2)!
Ys=
Ys =4!
Yo =
y, =—6!
y,(0)=0n=2r

Y, (0)=(n-1) f ifn=4r+1
and vy, (0)=—(n-1)!if n=4r+3
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Check Your Progress:
1. If y =sin(msin™ x) then show that

(1-x2) Yoo — (20 +1) XY, —(n2 —mz)yn -0
[Hint : Findy, then

(1-x*)y? =m?(1-y?) and again differentiate and apply L. theorem]

2. If y=e*"™ then show that
(1-X*) Y., (20 +2) xy,, —(n* +2@°)y, =0
3. If y=acos(logx)—bsin(logx)

then show that
X*Yo, +(20+1)xy,,, +(n* +1)y, =0

[H int: x%y, +xy, +y=0— apply Leibnitz theorem]

4. If yz(sin'lx)2 then show that :
(1_ XZ) yn+2 (2n +1) - Xyn+l - nzyn =0
5. If x=tan(log y) then show that:

(1-X*) Yoo +[ 2(n+1) x=1] Y, +N(N+1)y, =0

6. If Fsin[log(x2 +x+1)] prove that
(X+1°) Yoo + (20 +1) (X +1) Y,y +(0° +4)y, =0
[H int : Find y,, simplify, findy, simplify and apply leibnitz theorem]

10.6 LET US SUM UP

In this unit we have learnt
nth order derivative formula

hy-—1 _(-1"a"n!
aX+b n (ax+b)n+1
a"(-1)"" (n-1)!
(ax+b)"

ii) y=log(ax+b)=y, =
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n

i) y=a™ =y, =a™(loga)".m

iv) y=sin(ax+b)=y, =a"cos ax+b+n?”j

n

v) y=e*sin(bx+c)=y, =r"e* cos(bx+c+na)

v) y=e*sin(bx+c)=y, =r"e*cos(bx+c+ne)
where r =+a’ +b?
and o :tanfl(%)

. Leibnatz's theorem

10.7 Unit End Exercise

1. Find nth order derivative of the following functions:

i) (8x - 7)°

i) Sin( 9x+3) + cos(2x+5)

iii)  Cos®2x

iv) Sindxsin3x

V) 2SINXCOSX

20 19
XU 4+5xT+7
2. If y= , find
y i 5 Y2o0.
35 34
XU +TIXTT+12 .
3. If y= , find
y 7 Y3s.

4. Find 5" order derivative of y = x*e*.

5. Find 4" order derivative of y = X°sinx.
n!

6. If y = x" log x,, then show that Y1 =—
X

7. Iflog y =tan ~1x, then show that

M Qx)y=y
i) @+ x3)yn=[L-2(0-)x]yp1=(—-1(N—2)Yn_2

*kkkk
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PARTIAL DIFFERENTIATION

UNIT STRUCTURE

111
11.2
11.3
11.4
11.5
11.6
11.7
11.8

Objective
Introduction
Partial Differential Coefficients
Total differentiation
Some additional results
TYPE - Ill Variable to be treated as constant
Let Us Sum Up
Unit End Exercise

11.1 OBJECTIVE

After going through this unit, you will be able to

Find Partial Differentiation.
Total Partial derivative
Euler's theorem
Approximation and error
Maxima and Minima

11.2 INTRODUCTION

So far, we have been concerned with a functions of a variable, but in many
problems in science and mathematics we have to deal with functions of

two or more independent variables.

e.g. the lift L of an aeroplane wing is a function of three independent
variables : A, the area of the wing, V, the speed at which the wing is

moving; and P the density of the air. The law is L = Akv’p

In the language of mathematics, if variable u has one definite value for any
given values of x,y,z then u is defined as a function of x,y,z.We represent

it

u=f(x,y,z)

Note that u is independent variable and x,y,z are indepedent variables.

This relation is writtenas - u — X, Y, z
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11.3 PARTIAL DIFFERENTIAL COEFFICIENTS

The partial derivative of u= f(x,y,z) with respect to x is the oridnary
derivative of u with respect to x when y and z are regarded as constant. It

is denoted by @ ai orf,.
ox' ox

(To be pronounced as dabba u by dabba x)
ThUS @ﬂorf I f(x+hvyvz)_f(X,y,Z)
ox’ Ox Im

x®0 h

Similarly when we differentiate u with respect to y we keep x and z
constant and so on

In general, — ou g— i’ are also functions of x,y,z, so we can obtain higher
y
ordered partlal derivatives of u=f(x,y,z)
o (ou) S o f
eg —_— :—2 = fXX = 2
ox\ oy ) ox OX
i(@]_ A%u . o f
oy\ox) oyox 7 2yox
2 2
And gfou)_ o =f, = ot and so on.
ox\2dy ) oxoy 2.0
Note :
2% 2%
In general , =
oxXoy  Oyox

11.3.1 RULES OF PARTIAL DIFFERENTIATION:

(1) Let,u v be functions of x,y,z Then
i(u iv) = 8_U iﬂ
0 X oX 0X

17 ov ol
2 — = uU—+v—
@) ﬁx(uv) uﬂx Vo”x
2 )k
OX OX

ou ov

7_u7
i(ﬂj: OX___ OX
ox\ v v?
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i(hj__hﬁ
ox\ v v: Ox

11.3.2 Chain Rules:

Chain- rules are to be developed by drawing flow- diagrams.
Study this point carefully.
(1) Let u=f(x,y,2) and x=¢ t=¢, (t), z=¢(t)
[i.e. uis a function of x,y,z and x,y,z each is a function of only variable t]
© Ths, . Su_dud Judy oude
ot oJx dt Jdy dt Jdz dt
( u is a function of only variable t,

we wirte total derivative d_u and not %)

e.g.ifu=x’+y* +z°, x=t,y =t*,z=t>
then u— X\y,z—t

%:(gx).u (2y)(2t)+(22)3t>

2) If u=f(t)andt=¢, (x\y.z)
le. u—>t > XYz

Ju du ot
then —_—= ——
ox dt x
e.g. u=t}, t=x*+y*+2°
then U _ 3205 = 6xt?
O X

3) If u="f(x,y,2), x=¢, (1.s),
y=¢, (),
z=¢, (1.9),

then the flow diagram becomes,
le. U—> XY,z > s

If we want % then it is given by
s

ou ou odx ou 2y ou oz

s Ox Os Oy Os 07 Os

e.g. U=x>+y? +2°, X=r+s+t, y=s>+t*,z=t*
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then %: 2X-1+2y-25+22-0=6X+4Ys
S

114 TOTAL DIFFERENTIATION

In Partial differentiation of a function of two or more variables , only one

variable varies. But in total differentiation, increments are given in all the

variables.

Let z="1(xy)

Let 5z be the increment in z corresponding to the increments 2x and 2y in
x and y respectively

Replace 0 by ¢ only

Then z+8 7= f(X+6Xy+2Y)
5z=f(x+0x,y+2y)—f(x,y)
L oz=f(x+Ixy+ay) —f(xy+2y) + f(x,y+3y) — f(xy)

o 57— f(x+0”x,y+0”y)—f(x,y+o”y).0ﬂx}{f(x,y+o”y)—f(x,y)}
J X oy
ay
T of of
Taking limitsas 6 x >0,0 y >0weget 6 z=—-d x + — - dy
OX oy

d z is called as total differential of z

Let us see some Corollaries:

1) Let
u= f (Xv yv Z) and X:¢1(t)l y = ¢2(t) 72 = ¢3(t)

[i.e. u is function of x,y,z and x,y,z each is a function of only one variable

t.]
Thus,
U= — xVy,z —>t

du_ Ju dx Judy ou dz

= +
dt Jx dt 2y dt oz dt
( u is a function of only one variable t,

We write total derivative d_u and not @J
dt ot

eg. Ifu=x®+y* +2% y=t* z=1°
then u > Xx,vy,z —> t
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‘;_‘t‘z (2x)1+ (2y) (2t) + (22) 38
(2 Letu=f(x,y)and ¢ (X,y)=0
@ (X, y) =0,y can be regarded as

a function of x and hence flow-diagram is
u — Xy — X

du_oJu ,,du dy
X X 2y dx
e.g. if u=x*+y’
and x*+y®+3xy=4 thento findg—u
X
) x® +y* +3xy=4
Differentiate with respect to x,
a2 43y Wagyea IY o
dx d x
dy (¥ +y)
d x (x+y2)
2
and d_u:_u+_u _y:2X+2y|:_X +¥:|
X+y

_ (x+y*) = 2y(x* +y) B 2[x*-y* # xy* -x* y]s)
(x+y?) . (x+y?)

If f(xy) =0 then to find S—Z\

[This result is a special case of result (4) ].
Letu=f(x,y)andf(x,y)=0

.. Uﬁxay
and - f(xy)=0
. y > X
u — X, y—> X
then d_U:Q_'_Qd_y
dx 2 X y dx
u=20 d_u:O
X
ou
dy - _ 2x
x  Ju
y

or, = -
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If u=f(xy 2

where y and z are all functions of x, then we have
u > Xy, 2 —> X and
du _Jdu 5u.dy+ﬁu.dz

then —t— - —+— — =0
X 0 X z X
_ L dhy
4) If f(x,y) =0then to find e
X
We use the following notations :
_of _of ot o f _ o0 f
__1q__1r_ le_ 1t_ 2
o X ay o X X3y ay
f(xy)=0
2
3)(32/: Z:;i’);_[g (Result 5)
dp dq ]
dy _ | Tax Pax -
ok N Q)

and — = —+ — . —= =
dx Jx Jdy dx
% (ﬁf)+ % (ﬁfj Bj
X \dX oy \dx) \q
I | [Ej:r_sgzrq-sp
ox* dxox \q q q
d_qza_mﬂd_v:i(i}i(ij(gj
dx ox oy dx ox\oy) oyloy ) q
ot & p
Sy o q
s—t-2
q
sq— pt




L d? 1 m-s sq - pt
. from (i), dx); == {Q{Pq D}_p{qqp Hz

1
= g LaTr-2pas ot

11.5 SOME ADDITIONAL RESULTS

Partial Diffferentiation applied to :

n 1 Of
1) Brackets : — |IfX,y,2)| =n|f(Xy, 2z g
@ é,x[(y)] [f(x,y, 2)] oy
. . N Z of
(2) Trignometric function : — sin [f(x,y, z)] =cos [f(x,y,2)] - —
o X 0 X
(3) Expotential Function : G gltea] = lreera) log a - at
o X X
. o 1 of
4) Log - function: — |log {f (X, y,2)! | =
(4) Log 5 Llog {f ey )] Tv7) o
(5) Inverse Trignometric function :
ZE 1 of
—sin™ [f(X,y,2)| = .
R N T L
) ou 1
Note : (1) In general, I x # 2%
Ju

eg. |if x=rcosd and y=rsin b

then (QJ =cos ¢
ar

and since , x* +y* =r?

(2) When we write
u—XxYy,z

It means u depeds on X, y, z and x,y,z are independent among themselves.

EXAMPLES
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TYPE -1

NOTE :

Problem in this type are based on direct differentiation
(1) First find dependent and independent variables.

(2) Use the necessary formulae.

Examples 1 :
/% z 0%z

If z=x" +y* then show that =
oxady Jdyadx

Solution: z=x" +y' XY
az =yx** +y* - logx (i)
ay
and 92 W logx Xy (ii)
ay
Differentiating (i) partially with respect to y,
oz 1
= (yx’ - logx +x**) + | y*-= +logy-xy**
FEy (y g )(yy gyy]
=yx¥" - log X + x¥* +y* + xy*! - logy.......... (iii)
Differentiating (i) partially with respect to x,
2
7z .l +yx’* slogx+1 -yt +xy*t- logy........(iv)
oX oy X
From (iii) and (iv)
o%z 0%z

oX oYy S5 y JX
Examples 2: If u=log (x* +y* +z° —3xyz)

(a o ajz_ 9
+ + u=s ————

then show that

OX 0y 0Oz (x+y+z)2
Solution:
Note that u is a function of X, y, z
I.e. u— XY,z
u=log (x* +y® +z° —3xyz)
ou_ ! (3x* —3yz)

ox (O +y? +2° —3xy2)
[see the rule of partial Differentiating applied to log function]
and similarly

ou _ 1

= 3y’ —3xz
ox (X +y® +z° —3xyz) 3y )
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ou _ 1

= 3z% - 3x
ox (X*+y® +z° —3xyz) ( )

du Jdu 2Ju 3 (XP+y® +2° =Xy -y - 2X)

" dx Ay Jdz x® +y® +7° —3xyz

_ 3(X* +y® +2° —xy -yz - 2X) 3

S (xHy+z) (XY A —xy-yz-2X)  X+y+Z
Note that :

o .6 oY (o6 o  é)(Au. Ju Ju
+ + u= + + + +
ox oy oJz ox oy oJdz)\dx 2y Oz
o o 0 3

= + +
oxXx o0y Jz)\x+y+z

_0 3 N o 3 N o 3
OX \X+y+z 2y \Xx+y+z 27 \X+y+z

-3 -3 -3 -9

(xry+e)  (xry+rzf  (xty+e)  (xryrz)

— (1. 2 \V2
Example 3: If v= (1 2xy +y ) then show that
i ov oV 2.,3
)X — -y — =y“ v’ and
( ) 2 x Yy g y Yy

.y O \ OV o , OV | _
R e R i

Solution: V= XY

We write v =1-2xy+y?
Differentiate partially with respect to x and y,
(see the rule of Partial Differentiation applied to Brackets).

av
-2 '3_:-2
v J X y
oV 3
=y . 1
VY (1)
and 2v° ov =-2X +2y
oy
Q:V3 (X-y) .......... (2)
y
from1and 2
X ﬂ _yﬂ :)(yv3 -yv3 (X-y):y2 V3

0 X oy
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(ii) - (1-x) % =(1-x*)y*  from (1)

2wy 2] =y £ faex) v

(- * yis constant, and v is a function of x, y)

—v | _9ws3 20V
—y{ 2xv® + (1-x*) 3v éx}

y\/S[Zx 3(1- x)yv} ......... (3)
Again {2 } 5y x-y)}
=3 g—x(xy y)+v (2xy -3y*) (v > xy)
= [3V C(x-y) - (xy*-y?) + v (2xy 3y)]
= 3y[3v (x-y) (xy-y)+(2x-3y)}
:v3y[3v2 (x-y) (xy-¥?) (2x—3y)} ........ (4)

) g )
[ 2x+3y (1-x*)V* +3V y (x-y°) +(2x -3y)} from (3), (4),
=y Vv* [Sy (1-x2) (x-y ) v2-3y]
=y [3y (1-%° +x° -2xy +y* )V? -3y]
=yV® [By [v'z] V2 -ByJ
=0 vV =1-2xy+y?
Example 4 : If u=log (tanx +tany+tanz ) then show that

sin 2x - @+sin2y- ﬂ+sin22@:2
O X oy oz

Solution: Here U—> Xy, z

(Using the rule of partial diff. applied to log function) we have,
ou _ 1
ox tan X +tany +tanz
ou _ 1
oy - tanx +tany + tan z

. sec? x

- sec’y
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ou _ 1

= - sec’ z
X tanx+tany+tanz

) Ju . Ju . Jau
s.o8in2X — +sin2y - — +sin2z - —
o oy 0z

_sin 2x. sec’x + sin2y . sec’y + sin2z. sec’z
tan x + tany + tan z

_ 2 (tanx+tany+tanz ) _

(tan x +tan y + tan z)

sin 2x. sec®x = 2.sin X . COS X . =2tan x

cos? x

e

Examples5: If & =t",¢e * then find the value of n show that

10 (.00 00
r’ or or ot

Solution: Wehave 60— r,t

(To simplify the expression, we take log).

2

We have, logd =nlogt- r—t
]

Diff. partially with respect torr,

1 060 _-2r
0 or 4t
a0 r0@
or 2
rzﬁz- r’ o
r 21

Diff. partially with respect torr,

i(rz QJ:-1[3|'29+|‘3Q:|:
2 or

2

2
lzi[rz ﬁj:-l 39-"9 .
r- or or 2 2t

+
|
| e



r- or or t
From (2) and (3) we get,
ng r*0 36 6 3
— + = -= -+ Soon=E-=
t 4t 2t 4t 2

Example 6 : If u(x,t)=Ae% -sin(nt-gx)

2
and if g4 u d li then show that g = fl
o X 17 2u

u— xt

Solution:
ou ax
We have, n =Ae¥ - cos (nt-gx) - n

=Ane® cos (nt-gx) (- xis to be kept constant)........ €h)
Again diff. u partially with respect to x, we get,
Ju

— — =Al|l-ge?¥. si t- -0g- e¥ . t-
™ [-ge® . sin(nt-gx)-g- ™ .cos (nt-gx) |

=-Age™ [sin(nt-gx)+cos (nt-gx)]

(Rule of partial differentitation applied to product )
/% u
o X?

e¥ [-g -cos (nt-gx)+gsin (nt-gx)]

=+ Ag® e¥ [2cos (nt-gx)]

=-Ag [-g e®sin (nt-gx ) +cos (nt-gx) ]

ou _  o°u
ot Yox
From (1) and (2)
(An.e% . cos (nt-gx) = u . 2. Ag® . % . cos (nt-gx)
n=29° u Sg= n
2u
X . “u
Example 7 : If u=x’tan® Z-y*tan™ =, then find .
X y OX Oy

Solution: Y = XY

We have , L - (lj -y? - 1 > [—LJ -2y tan™
y

ay 1+y2 X 1+X72
X y
3 2
= 2X = -2y tan™ =+ 2xy =’
X*+y y X +y
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3 2
= x2+xy2 —2y-tan’15
X“+y y
:x-2ytan'15
y
2
o u _ o (2du _ 0 2-2ytan'1§
oxX oy ox\Jdy 0 X y
2 2 2
ey L () B
1+ Y y y
y2
Check your progress:
1) Ifu, (x +y) = x> +y? then show that :
U _dU)_4fq.04 U
ox oy oxX 2y
2 2
Hint u= 2 Ty .'.uax,yfindﬁ,@ .......
X+y ox 2y

(2) Find the value of n so that u=r" (3 cos® @ - 1) satisfy the equation

ﬁ r2 @ + 1 sin & @ =0
ar or sin @ 2

Hint:u — r, 6, Find ﬂ ﬂ ....... Ans.n=2, -3.
ar o040
(3) If u=¢e"™* then show that
2°u
—————— = (1+3xyz+x* y? 7% )- ¥
OX 0yoz ( vz y )
2 3
First find Y then —2—Y_ and —2_Y
o1 oX oz OX -0y 0z
X 2
(@) If v= - e %%, then prove that 9V _g2 & \2/
Jt o't J X
1 2
Hint : Take log, .. logv=1logc- =logt - % X, t
R K
2
(Find ov and d 2V apply the rule of P.D. applied to log function)
ot o X
(5) Find 2 where u = log (x? +y? +z?) Ans. —4yz
oy oz (X* +y* +27%)?
2 2
(6) Verify o’u _o°u Where (i) u=log (ysinx +xsiny)

OXoYy oy



207
ou _ 2%u
OxXoyozr Oyax’

2 2
(8) If u=log (ysin X+ X sin x) then show that oy __Ju

&xﬁy_ﬁyﬂy
(9) If u=log Q/xz +y? + 2% then show that

2 2 2
(o) (St L)
oX o0y 0z

(7) Ifu=x" y" then show that

[H int: - e = X +y*+7° U > XY,z
ZeZUQ: 2X
J X
ﬂu :Xe-2u
o X
2
5 g = e‘2”+x(—2e’2“) OU_ ot gy .y g2
o X 2 X
- e—2u_2X2 e-4u
10) Ifu=r", r=yx*+y’+2°
2 2 2
then find the value of é’ lj+ Of) ;J+ 0” 2u
ox: oy o0z
) m ., Ju J4
Hint :u=( X2 +y2 +22)"" u— xVy,z ... find —,———.......
i o=( 5y ) ya i 222

Ans:m (m+1) r"
TYPE - 11

Note :- Here we deal with the the problems of the type u = f (x,y, )
where X, y functions of x, y, z

i.e. u—-> XY, Z - XY, Z

We shall be frequently using the Chain- Rules can be develop drawing the
flow- diagram.

Jdu Ju 2Ju
+ + =0

Example 8 : If u=f (x-y, y-z, z-x) then show that
P ( vy ) oX 0y 0t

Solution: L&t X=Xy, Y=y-z, Z=z-x

sothat u=f(X)Y,Z)
u— XY,Z > XxXy,z
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Ju_Jou ﬂX ou éY ou az
o X ﬁX O X é’Y O X é’Z O X
zﬁu.(1)+0”u.(o)+o”u_1:ﬁu_é’u
o X oY oZ OX 0Z
and Jdu _Ju ﬁX ou &Y ou @Z
oY X oy &Y oy ﬁZ oy

Jdu Jdu au au
— = (1) +——-(1 0
0 aX()Jré’Y()o”Z()
_ou_du
oY X

Ju_Jdu. ﬁX du JY JdudZ
0Z 00X 0z éY oz az oz
_au Ju ou y__2du du (3)

Similarly

_5x(®+avkﬁ aza) oY 027
From (1), (2), (3)
au ﬁu ﬁu
ox oy oz

2
Example 9 : If u=f (X—J then prove that
y

2 2
i)x 2842yl Y] =0 (i x? OU 4o Z Ueg
O X oy OX2Y oy
Solution:
X2
Let t=— sothat u=f(t)

2

{Note that u is a function of only one variable X =t, which in turn is a
y

function of x and y]
u—>t— xy (seechainrule?)
Jdu_du Jt _du 2x
ox dt ox dt y
du_du Jt _du (x*
oy dt dy dt | y?
Au . Jdu 2x*du 2x*du
X +2y = - =
o X cy y dt y dt
Ju Jau
1eX—+2Yy— =0.covvviiieieeie 1
X yay @
Diff (1) partially with repect to y we get,

and,
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2 2
xO U408 9y 97U g @)
O X O X o X2y
2 2
and x g u +2y0” l;+2-0”u:
O XX oy oy

Taking (2) x x+(3) x y, we get
2 2 2 2
(xzé’ U, oy 02U Ou, J%u OU 520 ujzo

X X X +2
o x? yé’xé’y o X yaxé’y yéy y oy?

X—+2y——=0 from (1
oy yay 1)

,07%u A%u ,0°%u
>~ +3Xy + 2y 5=
o X OXIY oy

X 0

Example 10: If (cosx)’ =(siny)" then find g—z

Solution:
Taking logs, we get,
y log cos x =x log siny
Let f (x,y) =y log cos x -xlog sin y=0
dy _ df/dx
dx df/dy
Now, a—f:y-
o X COS X
= -y tan x-log siny

(-sinx) -logsiny

of 1
and ——=log cos x- x—— cos y=log cos x-x cot y
ay siny

dy _ ytanx+logsiny
dx logcosx—xcoty

- From (2)

Example 11: If y*+x’ =(x+y)""” then find j—y
X

Solution:

Let f(x+y)=(x+y)" —y*—x’ =0
dy o2 flox
dx o f/ldy

Now,

and  Z—= (x+y)™ [1+log (x+y)]-xy** X" -logx
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. From (1), 2¥= _{(X+y)(x+y) [1+log (x+y)]-y* Iogy-yxy'l}
- ' d {(x+y)<x+y) [1+log (X+y)]_xyx.1_xy'logx}

Example 12: Prove that at a point of the surface x* y* z*=c

2

X2y

where x=y=z,

=—(xlog ex)_l

Solution:
2

[From the expression it is clear that z — x,yJ

oxoy

Taking logs

x log x+y log y+z log z =log c

Different with respect to y partially, (i.e. keeping x constant)
1 1\0z

O+log y+y-— (Iog z+z-—j— =
y z)0y

5%z (1+logy)

o X (1+logz)
Diff . with respect to x partially, we get,
/%z -1 1012
=—(1+lo =
X2y ( gy){(l_ylogz)z ZOf)X}

_ (1+logy) &z
z (1+Iogz)2 o X

1+log x
Now, we can show (as in (1) that oz_ —( 9%)

Jx  (1+logz)
2
From (2), 0%z :_(1+Iog x)(1+logy)
dx dy z (1+logz)
At vz o'z (1+Iogx)2 L 1
A dxdy  x (1+log x)’ ~ x (1+log x)
1 1

X (log e+log x) ~ xlog (ex)

= —[xlog (ex)]_1
Check your progress:

@) If z=f(x,y,u,v) where u,v are functions of x,y then prove that
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ﬁz_é’f+ﬁf_5u+ﬁf_5v
OX OX Jdu dx Jdv X

and write corresponding formulae for

oz [ e 01 }

—. |HInt:z—> Xyuv-oXy —=. e

oy o X

(2) If v=f (x* +y* +2°) then show that

ot 9%*v d%v

+ +

ox* oy* 97?

[Hint: Letx*+y*+2° =u

=4 +y*+22) £ (X +y? + 27 )+6 (X7 +yP +2°)

V> U — XYz
Jdv_Jdudu
ax Jdv Jdx

and proceed}

11.6 TYPE - 1l VARIABLE TO BE TREATED AS
CONSTANT

. au . R ) .
Notations : (ﬁ_j means partial derivative of u with respect to x keeping
X
Y constant.

ou

To find (
O X

j we must have an equation in u, x and y only.
y

Example 13: If x=r cos 8, y=r sin @ then show that

2
o x oy o
X| == +y | =2 | =x*+V?
{ (ml y(ﬁru g

Where surffixes denote variables kept constant

Solution:
".* X=r cos @, y=rsin 4

(%) =C0S,, (Qj =sin 6.
or ), or),

2
x(ﬂj +y (ﬂ] = [xcos 0+ysin0]2=[rcos2 O +rsin? 9]2
ar ), ar),

— r2: X2+y2

Example 14: If u=Ix+my, v=mx-ly, then show that:
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2
(i)(ﬁu] _[aszzz _ and
ox), \du), ©+m

(i) (é’yj (é’vj - 212 2
ov)\2y), r+m

Solution: We have
u=l x+my

v=mx-l y
@) - u=l xtmy
(@j o )
oX),
(i1) To find (ﬂj we must have relation between x,u and v

Eliminating y from the given relations, we get,
lu+my= (17 +m?) x
1>+ m?
(zﬁlzmlmz ............ @
From (1) and (2)

au o X |2
(5 xjy '(a ujv TPy m?
@) - v=mx-ly
. Diff with respect to v keeping x constant,

(2]

ov

ay) _1
ﬁyxl

(iv) To find (?J ,we eliminate x from given relations,
y

mu-lv=(1°+ m?) y

u

i.e.
0-l (QJ = (174 m?) 1
ay),
ov :_I2+ m?
oY), I

From (4), (5)
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(ﬂy} (ov) _P+m’
aov), \2y), |2

Example 15: wf(xmn=OUmnymwumx(5zj __1
y

I X _(ﬁXj
oz),

Solution:
Here we use the result that if f (x,y)=0
of
2y __ox
then — =-£=
o Xy of
ay
(i) Here f (x,y,z)=0. When y is kept constant,
We have, (@ zj _2 f/o x
ox), 0 f/dz
(i) And (0” xj _0floz
dz), 0 f/dx
1

0z
From(Qand (2) | — | =————
@) @ (ﬂ xjy [ﬁ xj
0z y
Example 16: If x= cos 9, y= Sl 9, evaluate
u u

%) (&) &LE)

Solution
0 . cos @
u
J X cos 6
i e 1
(aul u? @
N sin® @
@ .. y =- 2
o sin® @
(_yj = SO @)
au), u

(iii) To find (% , We eliminate @ from given relations,
u 0
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ie x2+y2:ui2
1
or U2 = e, A
x?+y? (A)
ou (é’uj _ —2X 2
o X y (x2+y2)
au —X
(Ej = 5 SN2 e (3)
yoou (X +y?)
(iv) and again U’ = 21 -
x> +y

From (1), (2), (3), (4) we get,

: . [ cosé —X sin 0
Required expression = | -—— 7 |7 =
u u(x*+y?)

X €os @ +ysin @
u’ (x2+y2)2
cos’ f+sin*d 1
u u

but X C0S @+ ysind =
1t
u’ (x2 + yz)2

= iél ut=1 (from A)
u

Required expression =

Example 17: If x+y+z+u+v=a, x*>+y*+z2+u’+v>=b?,
where a,b are constants, prove that

(@] (Qj _[2v (ﬂj
X vz au),, oy ‘2 av ),
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Solution:

To find (@

> j we have to eliminate v from the given equations and as this
X
N4

process will have to be repeated four times, we proceed in the following way.
Let x+y+z+u+v=a ................. Q)
X2 +y?+2° +UP+Vo=b% 2)

differentiating with respect to x partially keeping y,z as constants, we get,

1+ (@j + [ﬂj =0.(3)
aX),, oX),,

and 2x+2U [@j L2y (ﬂj =0 4)
O X)y, aX),,

Solving the equations (3), (4) for (%j by Cramer's Rule we get
X )y

Ju V-X
(_j S VX B
oX),, u-v

Similarly differentiating (1), (2) partially with respect to y keeping X, z as
constants, we have

1+ (28] (DY) v (2] o )
YY), Y)., 2Y ).,

Ju ov
ey+ex | — +2v | —| =0
(é) ij,z (0” y]x,z

Solving (6), (7) for [ﬂj we get
ay

X,Z

ov -U
[a_j I ®)
Y s u-v
Similarly differentiating (1), (2) partially with respect to u treating v,z as constant
we get,
(Qj - (ﬂj +1=0 . 9)
au)y,, au),,
and 2x (Qj 2y (Qj L 2U=0 e (10)
au),, au),,

solving (9), (10) for (? we get,
u

v,z

ox) _ y-u
[%j = I, (11)
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Similarly differentiating (1), (2) partially with respect to v where u,z, are kept
constants, we get,

(ﬂj + [ﬂj +1=0 ... @2)
oV )y, oV )y,

2X (ﬂj + 2y (ﬂj +2v=0......... @3
oV, oV,

Solving equations (12), (13) for (?j we get,
V u,z

(5_3’) = VX, (14)
oV, X-Yy

From (5), (11) and from (8), (14) we get,
(6_UJ (Qj _ v-x y-u _ fov (ﬂ]
9 X y.z ou v,z u-v. X-y ay X,z ov u.z

2u

Example 18: If u=x*+y* and x=s+3t, y = 2s-t. Find 2 e

Solution: We have u=x2+y?
a_u: 2X, a_U: 2y
0 X oy
Now, Uu— Xy —>st
ou_ou ox, ou gy

ds 0x ds 0y ds
= (2x) @D + (2y) (2

= 2X+4y
o*u o0 (ou 0
Now, =— | —|= —(2x+4
0s* ds (as] as( )
:2Q+4ﬂ
Js as
=2x1+4x2=10
And ou_cuox,ouay .. 0]
ot ox ot Jdy Ot
= 2xx3 +2y (-1)
= 6x-2y
2
And ofu_ 2 (é’“} 2_(6x-2y)
ot ot\ot ot
:Gﬂ x_ﬁyX

ot ot °



= 6(3)2(-1)=20 worrrrrrrrrrrrerrn (ii)

Check Your Progress-

(@ If x=rcos &, y=rsin @ then show that (?J oy =1
4

@ Ife (X,y,2)=0thenshowthat[gzj .[é’xj .(é’yj —
y X y z

(3) If u=ax+by, v=bx-ay, show that
&) (ELHEL S
ox), \du), \dv), \y),

11.7 LET US SUM UP

In this chapter we have learn Application of Differential equation like-
Partial Derivative of 1st order and 2nd order

Total differentiation

Euler's Theorem

Approximation and error formula

Maxima and Minima of the function.

11.8 UNIT END EXERCISE

1. Find % and % if u=e"% cos(rsing).

2. Find xa—u+ya—u if u=sin|2 +tan_1(xj.
ox " oy y X

3. If u=(1-2xy+ y2)_% then prove that x%u— y%u = y2u3.

4.1f u=(1-2xy+ y2)_% then prove that 2((1—x2)a—uj—£ yg&_u =0.
OX ox ) oy

2 2 2
5. If u=x? tan_lilj— y2 tan‘{E) then prove that ou X2 y2_
X y XS4y
2
6.1f u= Iog(x3 + y3+z3 —Xyz), then prove that (2+2+2] u= Lz
Ox oy oz (X+Yy+2)
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3,3
7.1f u :tan‘l(X ~y J then show that
X=y
Q) xa—u+ ya—u:sin 2U.
OX oy
2 2 2
(i) X228 4oy 9Y 29U o ensausinu,
ox° OXoy 2
x4+ y4 ou ou
8. If u=log , then show that x—+ y—=3.
X+Yy OX oy

*khkkkk
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MEAN VALUE THEOREMS 12

Unit Structure
12.0  Objectives
12.1  Introduction
12.1.1 Rolle’s Theorem:
12.1.2 Lagrange’s Mean Value Theorem
12.1.3 Another Form of Lagrange’s Mean Value Theorem:
12.1.4 Geometrical Interpretation of Lagrange’s Mean Value Theorem:
12.1.5 Some Important Deductions from the Mean Value Theorem:
12.2  Cauchy’s Mean Value Theorem:
12.2.1 Another Form of Cauchy’s Mean Value Theorem:
12.2.2 Geometrical Application of Cauchy’s Mean Value Theorem
12.3  Summary
12.4  Unit End Exercise

12.0 OBJECTIVES:

After going through this chapter you will be able to:
. State and prove three mean value theorems (MVT): Rolle’s MVT,
Lagrange’s MVT and Cauchy’s MVT.

12.1 INTRODUCTION:

The Mean Value Theorem is one of the most important theoretical tools in
Calculus. Let us consider the following real life event to understand the concept
of this theorem: If a train travels 120 km in one hour, then its average speed
during is 120 km/hr. The car definitely either has to go at a constant speed of 120
km/hr during that whole journey, or, if it goes slower
(at a speed less than 120 km/hr) at a moment, it has to
go faster (at a speed more than 120 km/hr) at another B+
moment, in order to end up with an average speed of
120 km/hr. Thus, the Mean Value Theorem tells us
that at some point during the journey, the train must St
have been traveling at exactly 120 km/hr. This
theorem form one of the most important results in

«— V=fx)

,\H
ot

Calculus. Geometrically we can say that MVT states a
that given a continuous and differentiable curve in an
interval [a, b], there exists a point ¢ € [a, b] such that
the tangent at c is parallel to the secant joining (a, f(a)) and (b, f(b)).

12.1.1 Rolle’s Theorem:

If fis a real valued function such that (i) f is continuous on [a, b], (ii) f is
differentiable in (a, b) and (iii)f(a) = f(b) then there exists a point ¢ € (a, b) such

that f'(c) =0
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Geometrical Interpretation of Rolle’s theorem:

Fig 12.1

We know that f'(c) is the slope of the tangent to the graph of f at x = c. Thus the

theorem simply states that between two end points with equal ordinates on the
graph of f, there exists at least one point where the tangent is parallel to the X
axis, as shown in the

Fig 12.1. After the geometrical interpretation, we now give you the algebraic
interpretation of the theorem.

Algebraic Interpretation of Rolle's Theorem:

We have seen that the third condition of the hypothesis of Rolle's theorem is that
f(a) = f(b). If for a function f, both f(a) and f(b) are zero that is a and b are the
roots of the equation f(x) = 0, then by the theorem there is a point ¢ of (a, b),

where f'(¢) =0, which means that c is a root of the equation f'(z) = 0.
Thus Rolle's theorem implies that between two roots a and b of f(x) = O there
always exists at least one root ¢ of f'(z) = 0 where a < ¢ < b. This is the

algebraic interpretation of the theorem.
Example 1:  Verify Rolle’s Theorem for the following:

W x*in[-11] (2 x*in [1,3]
Solution: (1) Let f(x)=x?, x e [-1,1]
As f(x) is a polynomial in x, it is continuous and differentiable everywhere on
its domain. Also f(—1)= f(1)=1
: The conditions of the Rolle’s theorem are satisfied.
We may have to find some ¢ « [-1,1] such that f'(c) =0

Now f(X)= x° f’(aj) = 21. f'(c) =2c.
~f(e)=0=2c=0 ~.c=0and lies in [1,1]
. Rolle’s Theorem is verified.
2) Let f(x) =%, e [1, 3]
f(x) is polynomial in x. .. f(x) is continuous and differentiable everywhere on

its domain. i.e. (i) f is continuous on [1, 3] and (ii) f is differentiable in (1, 3).
But we have f(l) =1and f (3):9 which are not equal.

The values of f at the end points are not equal i.e. f(l) #* f(3)

. The function x? in (1, 3) do not satisfy all the conditions of Rolle’s Theorem.
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Example 2: Verify Rolle’s Theorem for f(w) = x(x + 3) e/% in [—3, 0]
Solution: Given f(x) = x(:c + 3) e"/%in [—3, 0]

@ f (x) is continuous in [—3, 0] since it is a product of continuous functions.

(i) f’(x) = (2x + 3) ey (1:2 + Sx) (— %j e t/2= /2 {2]; +3— % _ 3?@}

2
= /2 {_%+g+ 3} exists in (-3, 0)

(i) f'(-3) = f(0)=0.

All conditions of Rolle’s Theorem are satisfied. .. There exists ¢ € (—3, 0) such
/2 62 C
that f'(c)=0 =e““|——+=-4+3|=0
7(e) >3

=-4+c+6=0 = -c-6=0
s.c=3,-2

3¢ —3,0 =3 =c=-2¢ —3,0
Hence Rolle’s theorem is verified and ¢ = - 2 is the required value.
2
Example 3:  Verify Rolle’s Theorem for f(x) = log & tab in [a,b};
x(a + b)
a,b>0
Solution:  f(x) is continuous in (a, b) and f(z) =
log(fv2 + ab) —logx — log(a, + b)

2 1 2 _ab ) L . .
f'($): i —_:& eXIS'[S, since it is not indeterminate or

2 +ab T x(x2 +ab)

infinite.
Also f (a) =f (b) =0 .. All conditions of Rolle’s Theorem are satisfied.
<. There exists c < (a,b) such that f'(c) =0

¢ —ab

L C T g (ie) P —ab=0 .. c=-+ab,which liesin (a,b).
0(02 +ab)

Example 4:  Verify Rolle’s Theorem for f(z) = e" (sinx—cosx) in
[m /4,57 / 4].
Solution: Since e, sinx, cosx are continuous and differentiable functions, the

given functions is also continuous in {%,%} and differentiable in (%,%}

Also, f(ﬂ/él)=e_”/4(sin7r/4—(3087z/4)=0
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f(57r/4)=6_5”/4 (sin57r/4—cos57r/4)=0
~f(m/4)=f(5r/4) =0

Hence, Rolle’s Theorem is applicable.

Now, f'(x) =—" (sinx — cos x) +e (cosx + sin x) = 2¢ ’ cosw
f (c)=2e_c cosc=0 ..c=m/2,which liesin (%,%j

Example 5:  Verify Rolle’s theorem for f(x) = sin® z, 0 <z < 7.

Solution: We have f(x) = sin’z, 0<z <7

Since sin z is continuous and differentiable on [0, 7 ], sin” z s also continuous
and differentiable in the given domain. Nowf(o) = f(;z) =0

.. all the conditions of Rolle’s Theorem are satisfied.

. The derivative of f(x) should vanish for at least one point ¢ < (0, 7) such

that f c)=0 Now, f' 2 = 2sinzcosz = sin2z.

(
o f (c) =sin2c. = f (c) =0=sin2c=0 = 2c = 0,m,2m, 3m,...

SLe=0,—,m,...

N

Since ¢ = By lies in (0,72') , it is the required value. Hence Rolle’s theorem is

verified.
Example 6:  If f(z),¢(z), ¢(=) are differentiable in (a,b), show that there

fla)  #(a)  ¢la)

Solution: Consider the function F"(z) defined by, F(x) = |f(b) ¢(b) (b)
f@) ¢(z) (z)

since f(x),4(x), p(x) are differentiable in(a,b), F(z) is also differentiable in
(a,b). Further, F(a)=0 and F(b)=0 since in each case, two rows of the
above determinant becomes identical. . F'(a) = F(b)
Hence by Rolle’s Theorem, there is a value C € (a,b) suchthat F' ¢ =0

fla)  ¢(a)  ¢la)
ie|f(b) ¢(b) «(b)|=0

fie) ¢'(e) ¥(c)
Example 7:  If f(x) = x(x+1)(a:+2)(x+3) then show that f(:c) has
three real roots in [- 3, 0].
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Solution: We apply Rolle’s Theorem to f(x) in three intervals[—l,O],

[-2,-1], [-3,-2]
We observe that
(1) f(x) is continuous in all the intervals since it is a polynomial in x.

(i) f(ac) is differentiable in all the intervals .. polynomial in x.
(i) f(-3)=r(-2)=f(-1)=fO)=0.
Hence Rolle’s Theorem is applicable in all each interval such that f’ (c) =0

«. f(x) has three real roots.

Example 8:  Prove that between any two real roots of the equation,
e’ sinz =1 there is at least one roots of ¢* cosz+1=0.

Solution: Let a and b be two real roots of the equation e* sinz =1

(i.e) of sinx=e™* (ie)of e’ —sinz =0

Let f(x) = ¢ ¥ —sinx, which is continuous and differentiable.

Also, f(a) = f(b) = 0. Since a and b are roots off(a:) .

.. By Rolle’s Theorem there is at least one real value ¢ between a and b such
that £ (c)=0

Now, f'(m) = — ' —cosz

f'(c) =—e “—cosc
f (c) =0= - “—cosc=0
e “+cosc=0
sefcosc+1=0
. cisarootof e’ cosz+1=0 lying between a and b.
. b
Example 9: Us Rolle’s Theorem to prove that the equation az’ + bz = % + 3
has a root between 0 and 1.
ar®  ba?

Solution: Let f(x) = oty (% + gj z which is obtained by integrating

the given equation.
Here f(z) is continuous in [0,1] and differentiable in (0, 1) and

7(0)-1(1)-0
By Rolle’s Theorem there is a value ¢ (0, 1) such that f (c) =0

Now, f’(x) = az’ +bx—[%+g] and this is zero at x = ¢ which means the

equation, ax® +bg = [% + %j has a root between 0 and 1.
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Example 10:  Show that the equation z*> + z —1 =0 where z € R has exactly
one real root.

Solution: Let f(x) =*+2-1 zeR
F(0)=-1<0 and f(1)=1>0

Since f (=) is a polynomial, it is continuous.
Thus, using Intermediate value theorem, we get, there is a number ¢ between 0
and 1 such that f(c) =0

Thus the given equation has a root.
Now, let if possible f(:c) have two roots, say a and b. Then f(a) =f(b) =0.

Since f(ac) represents a polynomial, it is differentiable on (a, b) and continuous

on [a,b]

Thus by Rolle’s Theorem there exists a member ¢ between a and b such that
f'(e)=0
But f'(z)=32"+1, 2R
.'.f'(x)Zl, VreR
Hence f'(z) # 0 for any x, which is a contradiction.

Thus, the equation f () = 0 cannot have two real roots.

. The equation z° + 2 —1=0, z e R has exactly one root.

Check Your Progress
1. Verify the validity of the conditions and the conclusion of Rolle’s
Theorem for the function f defined on the intervals as given below:

a) 22 =3z +2 on [1,2]

b) log{xg;- 6} on [2, 3]

T
C) e “sinz on [0, 7]
d) e” (sinx — cos x) on [72' /4,57 / 4]

e) 72 (1 - a:Q) on [0, 1}

f) (a;—1)(x—3)e—“’ in [1, 3]

2. Prove that the equation 2z® —32> —z+1=0 has at least one root
between 1 and 2.
3. Test whether Rolle’s Theorem holds true for f (X) = |X| in [— 1,1]
sinx .
4. Verify Roll’s Theorem for the function f (X) =——1in [0, 7[]
€

5. Show that X® +4x+1=0 has exactly one real solution.
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Ansi(l) c=3/2 (2) c=x/4 3) c=x (4) c=L (5 c=3-22

J2

12.1.2 LAGRANGE’S MEAN VALUE THEOREM
Theorem 6.1: If y = f(x) is a real valued function defined on [a,b] , such that,

(i) f x is continuous on a closed interval [a, b], (i) f x is differentiable in

(a, b) then there exists at least one point ce€ a,b such that

fo-fa_,
b—a

12.1.3 Another form of Lagrange’s Mean value Theorem:

If (i) f(a:) is continuous in the closed interval [a,a+h] (ii) f(a:) is

differentiable in the open interval (a, a + h) then there exists at least one number

@ in(0,1)suchthat, f a+h =f a +hf a+0h

12.1.4 Geometrical Interpretation of the Langrange’s Mean Value
Theorem:

Let A(a f(a)) and B(b, f (b)) be two points on the 3
curvey = f(a:)
_/(b)=1(a)
b—a
Also, f' ¢ is the slope of the tangent at the point C

The slope m of the line AB is given by, m

(c, f (c)) Lagrange’s Mean Value Theorem says that

there exists at least one point C(c, f(c)) on the graph e

B(. A1)

e, fle))

where the slope of the tangent line is same as the slope of o
line AB. (i.e.) C is a point on the graph where the tangent
is parallel to the chord joining the extremities of the curve.

Physical Significance:

We note that f(b) - f(a) is the change in the function f(a:) as x changes from

1(v)-1(a)
b—a

over[a,b] .Also f’ ¢ isthe actual rate of change of the function forx =C.

a to b, so that is the change rate of change of the function f (x)

Thus the theorem states that the average rate of change of a function over an
interval is also the actual rate of change of the function at some point of the
interval.

12.1.5 Some Important Deductions from the Mean Value Theorem:
Definitions:-
(1) Monotonically increasing function:

N‘V
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Let f(x) be defined in [a,b]. Let z,z, E[a,b] such thatz, < z,. If

[ x < f x, then f(gc) is said to be a monotonically increasing function.
(i) Monotonically decreasing function:
Let f(x) be defined in [a,b]. Let z,z, E[a,b] such thatz, < z,. If

[ x >f x, then f(gc) is said to be a monotonically decreasing function.

Note:
(1) If f(x) is monotonically increasing (T)in [a,b] then we can write

f(a) <f(z)< f(b) forall z e (a,b). f(a) is its minimum value and f(b) is
its maximum value.
(i) If £(=) is monotonically decreasing (i) function in [a,b] then we can

write, f(a)> f(z)> f(b) for all =& (a,b). f(a) is its maximum value and
f(b) is its minimum value.
(iii)  Let f(a:) be differentiable in an interval (a, b). Let z,,z, € (a,b) and

X, <X, then applying Lagrange’s Mean Value Theorem to [xl, x2] , We get

[z, —fx _ e
T, — I
onfuwz, —fz =z,—z fc *)

@ Let f/ = > 0 for every value of x in (a,b) then from equation (*)
f(a:Q)—f(xl) > 0for (x2 —3:1) and f’(c) both are positive i.e.
I(z,)> 1 ()

We have thus proved: A function whose derivative is positive for every value of
x in an interval is a monotonically increasing function of x in that interval.

2 Let f* < O for every value of x in (a, b) from equation we have,
f(2,)=f(2,)<0 () < f(2)
for z, —z, is positive and f’ ¢ negative.

Hence f (a;) is a decreasing function of x.

We have thus proved: A function whose derivative is negative for every value of
x in an interval is a monotonically decreasing function to x in that interval.

Example 11: Verify mean value theorem for f = = logx on [1,e]
Solution: The given functionis f x = logzon [1,e]
We know that f = = logx is continuous on [1, e] and differentiable on (1, e).

Thus all the conditions of Lagrange’s mean value theorem are satisfied.

o dce (1,6) such that M = f’(c)

e—1
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loge—logl .,
L)

. 1
Since loge =1,logl =0and f' = = — we get 1 = 1
T e—1 ¢

.. ¢ =e—1 which lies in the interval (1, 2) and hence in (1, e), since 2<e < 3.

Example 12: Separate the interval in which the polynomial
22 — 152" + 362 + 10 is increasing or decreasing.
Solution: We have, f(x) =22 —152% + 362 + 10

f' x =62> —30x + 36
(i) f (=) is an increasing function if f* = >0
ie. 62° — 302 +36>0.ie.2° —5x+6>0
But z° — 5z +6 = (z — 3)(z — 2)
2t =bz+6>0 if (z—3>0 and 2—2>0) or (z—3<0 and

r—2<0)
i.e. if(z>3and z>2) or (z<3and z<2)
i.e. if >3 o0rx<2

Hence f(x) is an increasing function if x lies in (—oo,2) or (3,%)

(i) f(x) isadecreasing functionif /" = <O0.
i.e.62° — 30z +36 <0
i.eif 2> —52+6<0

But 2% — 52 +6 = (z — 3)(z - 2)

2 =5r+6<0if(z—3>0and z—2<0)or(z—3<0and z—-2>0)
i.e. if(z>3and z<2)or(z<3 and z>2)
i.e. if z<3and z>2 since z >3 and z <2 is impossible.

ie. if2<xz<3 = f(z)isdecreasingin (2, 3)
Thus f(a:) is increasing in (—oo,2) and (3,00) and f(x) is decreasing in (2, 3).

. . 1. .
Example 13:  Find the interval in which f x = x + — s increasing or

x
decreasing.
. 1 p 1
Solution: Wehave f 2 =z+— . f 2z =1—-—
x x
2
-1
f/ r = Zz :
x
(i) f(m) is an increasing function if f' = >0
2
X -1
ie. if ——>0.
X
ie.if x*—1>0.

ieif x?>1= x>1 or x<-1
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Hence f (=) is increasing in the interval (—oo,l) and (1,00)

(i) f(x) isadecreasing functionif /' & <O0.
2’ —1

Z
e if X<l = -l<x<1

ie. <0 22—1<0 ieifx?<1.

Hence f(x) is decreasing in (-1, 1).
2 2
Example 14:  Show that if x>0, z — z <log 14+z <x— _r for
2 21+x

x> 0.
2

Solution: Letus assume, f x =log 1+ —x + %

2
(m) —l+z=

1+z 1+z
’(x)>()foral| x>0 exceptat z =0. and f(0) =0

(x isan mcreasmg function in (0 OO)
(
2

log(1+x)<x—%,forx>0

)
)

increasing from 0 and hence f(x)> 0.

.. ()
Consider,
2
f(a:):m—ﬁ—log(bra:)
f‘(:L’)Zl— 2x—x2 3 1 _ x2

21+a) T 2(14a)
f’(x) > 0 for x > 0 exceptat x = 0 when it is zero.
f (=) is an increasing function in ((),oo)

f(x) increasing from 0 and hence f(:c) > 0.

2

m—x—Q >log(1+az) for z > 0.
2(1+2)
.. (i)
.7172 372
From (i) and (i),  — —- < log(1+z) <=z -———— forz>0.

2(1+ )
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Example 15:  Show that

tan ™ z — tan ™ y‘ < ‘x - y‘

Solution: Let f(x) = tan ! (x)
.. By Lagrange’s Theorem,

fb)-f(a) £(c)

b-a
tan (z) - tan™" Y
() <): 1 for—7%<m<c<y<7%
r—y 1+c? 2 2
But, <1 (v ¢ is positive)
1+ ¢

-1 -1
t -t
an  z —tan y| -

rT=y

1

‘tarf1 z —tan ! y‘ < ‘:r - y‘

|

Example 16:  Show that  log,,(z+1) = T%0°  \where >0 and
1+ 0z

0<60<1

Solution: Let f (x) = log,, (m + 1)

.. By second form of Lagrange’s MVT
For [O, x] we have,

fa+h =fa +hf a+0h
putting,a=0and h =x.
f(z)=£(0)+af (6z)

= 0+xf’(¢9x)=xf'(9x)

N 1
Bt f (I) - (a: + 1)log6 10

g _ 1 _logyye
RACE (1+061)log, 10 1+0x

But, f x =af Oz

f(:z:) f' (Hx) B loglo e

T 146z
zlog. e
IOg(IIZ‘ + 1) = %

Example 17:  Applying Lagrange’s M.V.T. to €*, determine @ in terms of a

X
and h. Hence deduce that, 0 < llog[6 J <1.
z

Solution: Let f(x) =e’ f’(x) =e
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Now, f(a+h)=f(a)+hf (a+0Oh)
6(L+h — e = he(a+9h)
soet (eh - 1) = he® e

ho_
But, 0<éd<1 .'.O<llog e -1 <1
h h

Now by substituting h = x in the above equation, we get,

T
.'.0<llog[e 1J<1
x x

b— _ _
1+bL; < tan 1(b)—tan 1(a)< I

Hence show that ~ + 3. tan~! 4 < 7% L1
4 25 3 4 6

Example 18:  Show that,

Solution: Let f(x) = tan™! (x) in [a,b]

1
s fle) =
( ) 1+ 2°
.. By Lagrange’s M. V. T.

(92020
. 1-'-102 _ tan (bZ:Zan (a) M

Sincea<c<b, a®<c®<b’

where c e (a, b)

cl+adl <1+ <1+b°
1 1 1
> >
1+a> 1+ 1+
From (1) and (2)
1 tan"'b—tan 'a 1
< <
1+0° b-a 1+ad°
b-a b-a
‘ 2 2 (3)
b l1+a

)

<tan?*b-tanta<

For the second part;

Since tan ™! = A weputa=1land b =§ in (3)
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: 1+/(1/1) < tan” (/)—tan‘1 (1)< %;11

2Lz 71% el 7%
..25+A<tan 3<6+ f

_a<log(y)<b_a forO<a<b
a a

Example 19:  Prove that, b

1 1
that — 4/ <=
Hence deduce tha 1 <log/3< .
Solution: Let f(z)=1logz in [a,b]
Since f () is (i) continuous in [a, b] and (ii) differentiable in (a, b)

by Lagrange’s M. V. T. dc e (a,b) such that M = f’(c)

—a
Butf(x)zlogx
"(z) =L "(e) =1

fla)=— v f(e)=2

. logb—loga 1

B b-a e

1
But a<c<b, 1<1<l (2)
a ¢ b

From (1) and (2) we get,
< logb —loga < 1

=>b_—a<logb—loga<b_
b—a a b a

—a b—a
os( /)
()<

For the second parta =3, b = 4.
1 1
S—<lo y<—
15 %33

Check Your Progress

1
b

1. Examine the validity of the conditions and the conclusions of LMVT for
the functions given below:
(i) e’ on [0, 1] [Ans ¢ = log(e — 1)]

(i) \/m on [2, 3} [Ans te= \/gJ
(iii) x+% in [% 3} [Ans:cz 3/2}

(iv) 1 on [—1, 1] [Ans:Not applz'cable}

X
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2. Apply LMVT to the function Log x in [a,a + h] and determine € in
terms of and h. Hence deduce that: 0 < 1 <1.
log (1 + x) z
3. Applying LMVT show that:
1 . 1
(i) L 30 % 1 for x>0 iy 1< 1
1+ 2? z z 1—722
for0<z<1
i) to—1t =Ly

x log(1+x) x

4. Provetha'[,b_—a<sin71b—sin71a<b;a, 0<a<b<7%
2 2 2
l1-a 1-9b
Hence deduce that,

(i) /+—<Sln (A)<%+é (i)
g—i<sm (/)<7% \/_

5. Separate the intervals in which the following polynomials are increasing or

decreasing.  (i)z® — 32% — 242 — 31 (i) x*—6x2—36x +7
[ Ans : (i)Increasing —oo,—2 , 4,00 ;Decreasing —2,4

(77)Increasing —oo,—2 and 6,00 ;Decreasing —2,6 ]

6. Showthat, z-1>logz > r-1 for 1-x.

T
7.1f f(x) = zsinz + cosz + cos® z then show that, 2 > f(x) > %

12.2  Cauchy’s Mean Value Theorem:
If functions f and g are (i) continuous in a closed interval [a, b], (ii) differentiable

in the open interval (a, b) and (iii) f* = = 0 for any point of the open interval
(a, b) then for some ce(a,b), f' e [g b —g a}:g' c [f b —f a }
gbe¢ gb-ga
ie. =
ffe fb—fa
12.2.1 Another form of Cauchy’s Mean Value Theorem:
If two function f () and g (=) are derivable in a closed interval [a, a + h] and

a<c<hb.

f" & = 0 forany xin (a, a + h) then there exists at least one number 6 e (0,1)

ga+h —ga g a+6h
such that, = , 0<6<1
fa+h —fa f' a+0h

The equivalence of the two statements can be shown as in case of Lagrange’s
mean value theorem.

Remark:
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() Taking f(x) =1r, we can derive Lagrange’s mean value theorem. In

other words, we may easily see that Lagrange’s theorem is only a particular case
of Cauchy mean value theorem.
(i) Usefulness of this theorem depends on the fact that f' and ¢'are

considered at the same point c. If we apply LMVT to ‘f” and ‘g’ separately then
f0)= f(a) = (b= a)f'(¢,), g(b) = gla) = (b—a)g'(c,) for some ¢, c, € (a,b)

12.2.2 Geometrical Application of Cauchy’s Mean Value Theorem:
Geometrically, we consider a curve whose paramedic equations are z = g(t),

oy Tt
y = f(t), a <t <b. Then, slope of the curve at any point is, <2 =
dx g/ t
f

(a)] and

Also the slope of the chord joining the end points Alg(a)
B[g(b), f (b)] is given by, f(b)-f(a)

9(b)-g(a)

Thus under the assumption of Cauchy mean value theorem. If z € (a,b) such

that the tangent to the curve at [g(x,), f(z,)] is parallel to the chord AB.

Example 20:  Verify Cauchy’s MVT for the function x “and x%in the interval [1,
2].

Solution: Let f(:z:) =z? and Ietg(:c) =17,
As f (x) and ¢ (m) are polynomials (i) they are continuous on [1, 2], (ii) they are
differentiable on (1, 2) and (iii) ¢’ = = 0 for any value in (1, 2)
.. Cauchy’s mean value theorem can be applied. .. If ¢ € 1,2 such that,
flfe f2-f1
gdc g2-g1
£:22—12:4—1:y s 23
3¢ 2°-1° 8-1 7 3¢ 7

= 9c=14 .'.c:%e 1, 2

.. Cauchy mean value theorem is verified.

Example 21: Using CMVT show that w:mtc’ a<c<b,
cosa —cosb

a>0,b>0
Solution: Let f(x) =sinz and g(m) = COS Z.

Here, f(z) and g(x) are continuous on [a, b] and differentiable on (a, b) and
for any cin (a, b), thus CMVT can be applied.

fle fb—fa
g'c_gb—ga

.Ce (a, b) such that,
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—cosc sinb-sina sinb —sina
L — = = cotc= ———
sin c cosb —cosa cosa —cosb

Example 22:  If in CMVT we write f(z) =¢" and g(z)=e™" show that c is
the arithmetic mean between a and b.

Solution: Now f(x) =¢” and g(aj) =e"

If can be proved that function f(x) and g(x) are continuous on any closed

interval [a, b] and differentiable in (a, b). Also ¢'(z) = 0 and = e (a,b)

e fb—fa
Then CMVT can be applied. .. 3 c e (a,b) such that, —— =
gc gb-ga
Now e = ¢ = —¢” and f(b)_f(a) = e —¢" = —¢**" where
s ol
ce (a,b)
—e% =" =>a+b=2c

Sc= a;b e(a,b)

Thus, c is the arithmetic mean between a and b.
Example 23: Using CMVT prove that there exists a number ¢ such that

1
O<a<c<band fb —f a =cf c log % . By putting f(x)zxé
deduce that
lim n(b% —1) ~ logh.

n—oo

Solution: Let f(x) be a continuous and differentiable function and
g (:1:) = log .

Then f(x) and g(m) satisfy the condition of continuity and  differentiability
f' e fb—fa

gdc gb—ga

of CMVT. Hence 3 ¢ € (a,b) such that,

ffe fb—fa
' 1/0 ~ logh —loga

= fb—f(a):cf’clog%

If f(x)= X' and g() = logz then by putting a = 1 we get in the interval (1,
b)

1

b% 1 (1/71)071
logb —log1 B l/c

n(b% —1J = (logb)c%.

where 1<c<b
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n—00

1 1
lim n(bz —1J=10gb [04 —>1las n— o]

Example 24: If 1<a<b, show that there exists ¢ satisfying a <c <b such

that
2 2
logy = b"-a
a 207
logb—loga 1
2

Solution: We have to prove that, ——— = —
A 2c

This suggests us to take f(a:) =logz and g(:z:) = 2° Now, f(z) and g(z)are

continuous on [a, b] and differentiable on (a, b) and ¢’ = = 0 for any c in (a,
b).

. CMVT can be applied. ~dce (a,b) such that,

/ 1
fe Jb-fa _ Yo togb-loga
dc gb—-ga 2c b? —a?

B 2 2

- L = M = logy = b a

20 b2 —a? a 2¢2
Check Your Progress
1. Find ¢ of Cauchy’s mean value theorem for:
. 1 . .
(i) f(x)=+x, g(x)=T, xe[a,b], a>0(i) fz =sinz,

X

g T = cosxon [O,%]
(i) f(x)=3x+2, g(x)=x*+Llonl<x<4(v) f(x)=¢e",
g(x)=e™ on[0, 1]

2
v)  f(x)=e*, g(x)=X2X+1, x e[-11]
[Ans:- () Vab (i) z/4 (i) 5/2 (V) Y2 (v)0]

12.3  Summary

In this chapter we have learnt about the mean value theorems. The
Rolle’s theorem which is the fundamental theorem in analysis has been proved.
The Lagrange’s MVT and the Cauchy’s MVT have also been proved. Problems
based on these theorems have been done in order to understand the Mean Value
theorems. In the next chapter we are going to learn about Taylor’s theorem and
its applications.

12.4  Unit End Exercise:

1. Verify Rolle’s theorem for each of the following:
) f(X)=Xx-D)(x-2)(x-3) in [-1,1]

i) f(x)=x(x—3)% in [0,3]

iii) f(x)=tan2x in [0, 7]

iv) f(x)=V4—x2 in [2, 2]
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2. Verify LMVT for the following functions.
i) f(x)=Vx2-1 in [-1, 1]
i) f(x)=(x-D)(x—4)(x-3) in [0, 7]

iii) f(x)=x(x+1)? in [0, 2]
3. Find ‘¢’ of CMVT for the following:

) f()=x% g(x)=x> in[1,2]
i) f()=x?+2x+4, g(x)=x+3 in[0,2]
i) f()=(x-1)%+4, g(x)=x-1in[0,2]

%k 3% 3k 3k %k >k %k 3k %k %k k
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APPROXIMATION, ERRORS AND EXTREMA 13

Unit Structure

13.1  Introduction

13.2  Objectives

13.3  Approximation

13.4  Maxima and Minima
135 LetUs Sum Up

13.1 INTRODUCTION

In the previous units we have seen how we can successively differentiate a
function, partial differentiation of a function and also various mean value
theorems. Differential Calculus has various applications. Some of the physical
and geometrical applications we have seen before. Derivatives can also be used
to find maximum and minimum values of a function in an interval. The
maximum and minimum values are called extreme values of a function. The
extreme values can be absolute or can be local. The first derivative test and the
second derivative tests are used to determine the points of local extrema. In this
chapter we are going to use the differential calculus concept to answer questions
like:

(1) What is the approximate value of sin1’?

2 What is the error in calculating the area of a square, if the error in
calculating the side length was 1%?

3 What are the maximum and minimum values of a function in a given
interval?

13.2 OBJECTIVES
After studying this unit you should be able to:

. compute the approximate value of a function at a given point.
. compute error, relative error and percentage error
. compute maxima and minima for a function in a given interval.

13.3 ERRORS and APPROXIMATION
Let z = f (X, y) be a differentiable function. Let oX denote the error in x

and 3y denote the error in y. Then the corresponding error in z denoted by 0z is

given by:
0z = a OX+ a oy
OX oy

The above formula can be extended to more than two variables also. For
example, if u = f(x, y, z) then continuing with the same notations,

8u:a—u8x+a—u8y+g—u82.
z

OX oy

. ) . . L 0z
Relative error: If 3z is an error in z then the relative error in z is given by: — .
z
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Percentage error: If 5z is an error in z then the percentage error in z is given by:

QxlOO.

z
Approximate value: If z is the calculated error value and 3z is the error in z then
the approximate value is given by: z + 0z .
Let us understand this with the help of some examples:
Example 1: The radius of a sphere is calculated to be 12 cm with an error of 0.02
cm. Find the percentage error in calculating its volume.
Solution: Given r =12 cmand dr = 0.02 cm. To find percentage error in volume

oV
of the sphere. Let V denote the volume of the sphere. To find 7><100 :

Now, Vzﬂnr3 = oV :d—VSr = ﬂn-><3r2><8r.
3 dr 3
i7t><3r2><8r
Thus, O x100= 3 ,100=3 2"%100 = 3x %22 100 =05
Y 4.8 r 12
3

The percentage error in calculating the volume is 0.5.
13.4 MAXIMA AND MINIMA

In this section, we shall study how we can use the derivative to solve
problems of finding the maximum and minimum values of a function on
an interval. We begin by looking at the definition of the minimum and the
maximum values of a function on an interval.

Definition : Let f be defined on an interval | containing ‘c’
1. f (c) is the (absolute) minimum of fon I if f (¢) <f (x) forall xin I.
2. f (c) is the (absolute) maximum of fon I if f (¢c) > f (x) for all xin I.

The minimum and maximum of a function on an interval are called the
extreme values or extreme, of the function on the interval.

Remark : A function need not have a minimum or maximum on an
interval. For example f (x) = x has neither a maximum nor a minimum on
open interval (0,1). Similarly, f (x) = x® has neither any maximum nor any
minimum value in . See figures 13.1 and 13.2.

Y4 VA
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Fig. 13.1: f(x) = x, x (0, 1) Fig. 13.2f(x) =x3, x eR

If f is a continuous function defined on a closed and bounded interval
[a,b], then f has both a minimum and a maximum value on the interval
[a,b]. This is called the extreme value theorem and its proof is beyond the
scope of our course.

Look at the graph of some function f (x) in Fig. 13.3.

A C
A
2N

AN :

v

a xqg b Xq X5 X3

Fig. 13.3

Note that at x = X0 , the point A on graph is not an absolute maximum
because f(x,) > f(xo). But if we consider the interval (a,b), then f has a
maximum value at X = X in the interval (a,b). Point A is a point of local
maximum of f. Similarly f has a local minimum at point B.

Definition : Suppose f is a function defined on an intervals I. f is said to
have a local (relative) maximum at ce | if there is a positive number h
such that for each xe | for which c —h <x < c¢ + h, x=cwe have f(x) >

f(c).

Definition : Suppose f is a function defined on an interval I. f is said to
have a local (relative) minimum at ce | if there is a positive number h
such that for each xel for which c —h <x <c¢ + h, x=cwe have f(x) <
f(c).

Again Fig. 13.4 suggest that at a relative extreme the derivative is either
zero or undefined. We call the x—values at these special points as critical
numbers.

[ (xy) does not exit
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Fig 13.4

Definition :

If f is defined at c, then c is called a critical number if fiff' (c)=0orf"is
not defined at c. The following theorem which we state without proof tells
us that relative extreme can occur only at critical points.

Theorem: If f has a relative minimum or relative maximum at x= c, then c
is a critical number of f.

If f is a continuous function on interval [a,b], then the absolute extrema of
f occur either at a critical number or at the end points a and b. By
comparing the values of f at these points we can find the absolute
maximum or absolute minimum of f on [a, b].

Example 2 : Find the absolute maximum and minimum of the following
functions in the given interval. (i) f(x) = x* on [-3, 3] (ii) f(x) = 3x* — 4x°
on [-1, 2]

Solution : (i) f(x) = x*, xe [-3,3]

Differentiating w.r.t. x., we get f'(x) = 2x

To obtain critical numbers we set f'(x) = 0. This gives 2x = 0or x =0
which lies in the interval (-3,3).

Since f ' is defined for all x, we conclude that this is the only critical
number of f.

Let us now evaluate f at the critical number and at the end of points of [

3,3].
f(3)=9
f(0)=0
f(3)=9

This shows that the absolute maximum of f on [-3,3] is f (-3) = f(3) = 9
and the absolute minimum is f (0) =0

(i) f(x) = 3x*~ 4x® xe [-1, 2] F (x) = 12x3 — 12 x

To obtain critical numbers, we set / (x) = 0 or 12x® — 12 x = 0 which
impliesx =0orx = 1.

Both these values lie in the interval (-1, 2)

Let us now evaluate f at the critical number and at the end points of [-1,2]

f(1)=7
f(0)=0

f(1)=-1
f(2)=16

This shows that the absolute maximum 16 of f occurs at x = 2 and the
absolute minimum — 1 occurs at x = 1.
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First Derivative Test

How do we know whether f has a local maximum or a local minimum at a
critical point ¢ ? we shall study two tests to decide whether a critical point
c is a point of local maxima or local minima. We begin with the following
result which is known as first derivative test. This result is stated without
any proof.

Theorem : Let ¢ be a critical point for f, and suppose that f is continuous
at ¢ and differentiable on some interval | containing c, except possibly at c
itself. Then

(i) if f* changes from positive to negative at c, that is, if there exists some h
> 0 such that c —h <x <c, implies f'(x) >0 and ¢ <x < ¢ + h implies f'(x)
<0, then f has a local maximum at c.

(i) if * changes sign from negative to positive at c, that is, if there exists
some h > 0 such thatc — h < x < c impliesf(x) <Oandc<x<c+h
implies f'(x) > 0 then f has a local minimum at c.

(i) if f(x) > 0 or if f'(x) < O for every x in | except x = ¢ then f (c) is not a
local extremum of f.

['®)>0 1) <0 [)<0 S@)>0

] g >x
Fig 13.5 Fig 13.6

As an illustration of ideas involved, imagine a blind person riding in a car.
If that person could feel the car travelling uphill then downhill, he or she
would know that the car has passed through a high point of the highway.
Essentially, the sign of derivative f '(x) indicates whether the graph goes
uphill or downhill. Therefore, without actually seeing the picture we can
deduce the right conclusion in each case. We summarize the first
derivative test for local maxima and minima as following:

First Derivative Test for Local Maxima and Minima
Let ¢ be a critical number of fi.e., f'(c) =0
If f(x) changes sign from positive to negative at ¢ then f (c) is a local

maximum. See fig 13.7. If f'(x) changes sign from negative to positive at ¢
then f(c) is a local minimum. See fig 13.8.

Note : f'(x) does not change, sign at c, then f(c) is neither a local
maximum nor local minimum.

Local Maximum at ¢

c—h c c+h

7 S S - = - g

(0 _— T
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Local Minimum at ¢

Case 12
c—h c c+h _
. T + + - - - - '4\'
AX) \ /
Fig 13.7
Fig 13.8
Example 3: Find the local (relative) extrema of the following functions :
(i) f (x) = 2x3 + 3x% — 12x +7 (i) f (x) = 21 X
X" +2
Solution

(i) f is continuous and differentiable on R, the set of real numbers.
Therefore, the only critical values of f will be the solutions of the equation
f'(x) =0.

Now, f'(x) = 6x% +6x—12= 6(x+2)(x-1)

Setting f'(x) = 0 we obtainx=-2, 1

Thus, x = -2 and x = 1 are the only critical numbers of f. Figure 13.9
shows the sign of derivative f* in three intervals. From Figure 13.9 it is
clear that if x < -2, f'(x) > 0; if

—2<x<1,f(x)<0andifx>1,f(x)>0.

Signof (x +2) — — — +++ NI
Sign of (v — 1) —— — ——- -
-2
X
f(»c)+++ 0— — —

/ T~ /

7 x)

Fig 13.9
Using the first derivative test we conclude that f (x) has a local maximum
at x =— 2 and f (x) has local minimum at x = 1.
Now, f (-2) —2=2(-2)3+3(-2)2—12(-2) + 7=-16 + 12 + 24 + 7 = 27
is the value of local maximumatx=-2andf(1)=2+3-12+7=01s
the value of local minimum at x = 1.

(ii) Since x 2 + 2 is a polynomial and x 2 + 2 #0 is continuous and
differentiable on R, the set of real numbers. Therefore, the only critical

will be the solutions of the equation f '(x) =

values of f (x) = 5
X +2
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Setting f'(x) = 0 we obtain x = 0. Thus, x = 0 is the only critical number of
f. Figure 13.10 shows the sign of derivative in two intervals.

—2X
(x2 + 2)2
Setting f'(x) = 0 we obtain x = 0. Thus, x = 0 is the only critical number of
f. Figure 24 shows the sign of derivative in two intervals.

Now f'(x)=

Signof (-2) ———  ———
Sign of (x) ——= SR
0
; X
() + 4+ ===
L
Fig. 13.10

From Figure 13.10 it is clear that f '(x) >0 if x <0 and f '(x) <0 if x > 0.
Using the first derivative test, we conclude that f(x) has a local maximum

atx = 0.
1

0242

Now since f(0)= zithe value of the local maximum at x = 0 is

1/2.

(i) Since x and e * are continuous and differentiable on R, f(x)=xe*is

continuous and differentiable on R.
Therefore, the only critical values of f will be solutions of f* (x) = 0.

Now, f'(x)=xe* +1e* = (x+1)e*
Since e >0,vxeR, f(x) =0 gives x = —1. Thus, x = —1 is the only

critical number of f.
The figure below shows the sign of derivative f" in two intervals :

Sign of (x) -—- 4+ It is clear that f'(x) < O if

Sianof(e)  + + + g x<-landf’(x)>0ifx>-1
Using the first derivative test
1 we conclude that f(x) has a

x | local minimum at x = -1 and
1) -—-=U++ + the value of local minimum

is
fx) \ — / f (1) =-1/e.
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Second Derivative Test

The first derivative test is very useful for finding the local maxima and
local minima of a function. But it is slightly cumbersome to apply as we
have to determine the sign of f ' around the point under consideration.
However, we can avoid determining the sign of derivative f ' around the
point under consideration, say c, if we know the sign of second derivative
f at point c. We shall call it as the second derivative test.

Theorem : (Second Derivative Test)

Let f(x) be a differentiable function on | and let ¢ el. Let f ~ (X) be
continuous at c. Then

1. cis a point of local maximum if both f'(c) =0 and f (c) <O0.

2. cis a point of local minimum if both f'(c) =0 and f (c) > 0.

Remark : If f'(c) =0 and f"(c) = 0, then the second derivative test fails. In
this case, we use the first derivative test to determine whether c is a point
of local maximum or a point of a local minimum.

We summarize the second — derivative test for local maxima and minima
in the following table.

Second Derivative Test for Local Maxima and Minima

f'(c) f"(c) f(c)

0 + Local Minimum
0 - Local Maximum
0 0 Test Fails

We shall adopt the following step to determine local maxima and minima.

Steps to find Local Maxima and Local Minima
The function f is assumed to posses the second derivative on the interval .

Step 1 : Find ' (x) and set it equal to 0.

Step 2 : Solve f ' (x) = 0 to obtain the critical numbers of f. Let the
solution of this equation be a, .......... We shall consider only those
values of x which lie in I and which are not end points of I.

Step 3 : Evaluate f ~ (o) If f (o) < 0, f (x) has a local maximum at X = o and
its value if f (o) If f (o) > 0, f (x) has a local minimum at x = o and its value
if f (o) If f () = 0, apply the first derivative test.

Step 4 : If the list of values in Step 2 is not exhausted, repeat step 3, with
that value.

Example 4: Find the points of local maxima and minima, if any, of each
of the following functions. Find also the local maximum values and local
minimum values.

() f ()= x2—6x%+9x+1, xeR
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(i) f(x) = x° —2ax® +a’x (a>0),xe R

Solution:

(i) f° (x) = 3x% —12x+9 = 3(x—1)(x—3)

To obtain critical number of f, we set f~ (x) = 0 this yields x = 1, 3.

Therefore, the critical number of fare x = 1, 3.

Now f~ (X) =6x—12 = 6(x — 2)

Wehavef (1)=6(1-2)=-6<0andf(3)=6(3-2)=6>0.

Using the second derivative test, we see that f (x) has a local maximum at

x =1 and a local minimum at x = 3. The value of local maximum at x =1 is f

(1) = 1- 6+ 9 +1 =5 and the value of local minimum at x = 3 is
f(3)=3°-6(3)°+9(3)+1=27-54+27+1=1.

(i) We have f(x) = x° —2ax® +a°x (a > 0)

Thus, f'(x)=3x?—4ax+a’ = (3x—a)(x—a)

As f'(x) is defined for each xe R, to obtain critical number of f we set
f'(x)=0.

This yields x =a/3 or x = a.

Therefore, the critical numbers of f and a/3 and a. Now, f"(a) = 6x —4a.
We have f"(a/3)=6(a/3)—4a=-2a<0

and f"(a)=6a—-4a=2a>0

Using the second derivative test, we see that f(x) has a local maximum at x
= a/3 and a local minimum at x = a.

The value of local maximum at x=a/3 is f(a/3)= %a3 and the value

of local minimum atx =ais f(a)=0.

Check Your Progress
1. Find the absolute maximum and minimum of the following functions in
the given intervals.
M fx)=4-7x+3o0n[-2,3]
3
(i) f(x) =—— on [-1,1]
X+2

2. Using first derivative test find the local maxima and minima of the
following functions.

() FO)=x3-12x (i) f(x)=§+§, x>0

3. Use second derivative test to find the local maxima and minima of the
following functions.

() F)=x-2x2+x+L xeR (i) f(x)=x+2J1-x, x<1
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135 LET US SUM UP
The chapter is, as suggested by the title, on applications of differential

calculus. In section 13.4, methods for finding out (local) maxima and
minima, are discussed and explained with examples.



