

7

CardLayout(int horz, int vert)

The following example creates a two-level card deck that allows the user to select an

operating system. Windows-based operating systems are displayed in one card.

Macintosh and Solaris are displayed in the other card.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*<applet code="CardLayoutDemo" width=300 height=100> </applet>*/

public class CardLayoutDemo extends Applet implements ActionListener, MouseListener

{

Checkbox Win98, winNT, solaris, mac;

Panel osCards;

CardLayout cardLO;

Button Win, Other;

public void init() {

Win = new Button("Windows");

Other = new Button("Other");

add(Win);

add(Other);

cardLO = new CardLayout();

osCards = new Panel();

osCards.setLayout(cardLO);

Win98 = new Checkbox("Windows 98", null, true);

winNT = new Checkbox("Windows NT");

solaris = new Checkbox("Solaris");

mac = new Checkbox("MacOS");

Panel winPan = new Panel();

winPan.add(Win98);

winPan.add(winNT);

Panel otherPan = new Panel();

otherPan.add(solaris);

otherPan.add(mac);

osCards.add(winPan, "Windows");

osCards.add(otherPan, "Other");

add(osCards);

Win.addActionListener(this);

Other.addActionListener(this);

addMouseListener(this);

}

public void mousePressed(MouseEvent me) {

cardLO.next(osCards);

}

public void mouseClicked(MouseEvent me) {

}

public void mouseEntered(MouseEvent me) {

}

8

public void mouseExited(MouseEvent me) {

}

public void mouseReleased(MouseEvent me) {

}

public void actionPerformed(ActionEvent ae) {

if(ae.getSource() == Win) {

cardLO.show(osCards, "Windows");

}

else {

cardLO.show(osCards, "Other"); } } }

Output expected as per the program.

2 a Explain Root Pane, Glass Pane, Layered Pane, Content Pane and Desktop Pane

 Swing offers some top-level containers such as - JApplet, JDialog, and JFrame. There are

some problems for mixing lightweight and heavyweight components together in Swing,

we can't just add anything but first, we must get something called a "content pane," and

then we can add Swing components to that.

The Root Pane :

We don't directly create a JRootPane object. As an alternative, we get a JRootPane when

we instantiate JInternalFrame or one of the top-level Swing containers, such as JApplet,

JDialog, and JFrame. It’s a lightweight container used behind the scenes by these top-

level containers. As the preceding figure shows, a root pane has four parts:

I)The layered pane: It Serves to position its contents, which consist of the content pane

and the optional menu bar. It can also hold other components in a specified order.

JLayeredPane adds depth to a JFC/Swing container, allowing components to overlap

each other when needed.It allows for the definition of a several layers within itself for the

child components.

JLayeredPane manages its list of children like Container, but allows for the definition of

a several layers within itself.

Ii) The content pane: The container of the root pane's visible components, excluding the

menu bar.

iii) The optional menu bar: It is the home for the root pane's container's menus. If the

container has a menu bar, we generally use the container's setJMenuBar method to put

the menu bar in the appropriate place.

iv) The glass pane: It is hidden, by default. If we make the glass pane visible, then it's

like a sheet of glass over all the other parts of the root pane. It's completely

file:///G:/Ebooksjavajavatutuiswingcomponentsapplet.html
file:///G:/Ebooksjavajavatutuiswingcomponentsdialog.html
file:///G:/Ebooksjavajavatutuiswingcomponentsframe.html
http://java.sun.com/j2se/1.4.1/docs/api/javax/swing/JRootPane.html
file:///G:/Ebooksjavajavatutuiswingcomponentsinternalframe.html
file:///G:/Ebooksjavajavatutuiswingcomponentsapplet.html
file:///G:/Ebooksjavajavatutuiswingcomponentsdialog.html
file:///G:/Ebooksjavajavatutuiswingcomponentsframe.html

9

transparent.The glass pane is useful when we want to be able to catch events or paint over

an area that already contains one or more components. We can display an image over

multiple components using the glass pane.

JdesktopPane:

The concept of showing multiple windows inside a large frame is implemented using

Desktop pane. If we minimize the application frame, all of its windows are hidden at the

same time. In

Windows environment, this is called as the multiple document interfaceor MDI.

Using it we can resize the internal frames inDesktop pane by dragging the resize

corners.To achieve this we have follow these steps:

1. We can use a regular JFrame window for the program.

2. Set the content pane of the JFrame to a JDesktopPane.

2 b Distinguish Between AWT & JFC

JFC (Swing)is a huge set of components which includes labels, frames, tables, trees, and

styled text documents. Almost all Swing components are derived from a single parent

called JComponent which extends the AWT Container class. Swing is a layer on top of

AWT rather than a substitution for it.

AWT Swing

AWT stands for Abstract windows

toolkit.

Swing is also called as JFC’s (Java Foundation

classes).

AWT components are called

Heavyweight component.

Swings are called light weight component because

swing components sits on the top of AWT

components and do the work.

AWT components require java.awt

package.
Swing components require javax.swing package.

AWT components are platform

dependent.

Swing components are made in purely java and

they are platform independent.

This feature is not supported in AWT. We can have different look and feel in Swing.

These feature is not available in

AWT.

Swing has many advanced features like JTabel,

Jtabbed pane which is not available in AWT.

Also. Swing components are called "lightweight"

because they do not require a native OS object to

implement their functionality. JDialog and JFrame

are heavyweight, because they do have a peer. So

components like JButton, JTextArea, etc., are

lightweight because they do not have an OS peer.

With AWT, you have 21 "peers" (one

for each control and one for the

dialog itself). A "peer" is a widget

provided by the operating system,

such as a button object or an entry

field object.

With Swing, you would have only one peer, the

operating system's window object. All of the

buttons, entry fields, etc. are drawn by the Swing

package on the drawing surface provided by the

window object. This is the reason that Swing has

more code. It has to draw the button or other

control and implement its behavior instead of

relying on the host operating system to perform

10

those functions.

AWT is a thin layer of code on top of

the OS.

Swing is much larger. Swing also has very much

richer functionality.

Using AWT, you have to implement a

lot of things yourself.

Swing has them built in.

2c Explain JpopupMenu Class with Example

This class provides an implementation of the Java Accessibility API appropriate to popup

menu user-interface elements. Popup menu is a small window that pops up and displays a

series of choices. A JPopupMenu is used for the menu that appears when the user selects

an item on the menu bar. It is also used for "pull-right" menu that appears when the selects

a menu item that activates it. A JPopupMenu can also be used anywhere else we want a

menu to appear. For example, when the user right-clicks in a specified area.

Constructor:

JPopupMenu() : It constructs a JPopupMenu without an "invoker".

JPopupMenu(String) : It constructs a JPopupMenu with the specified title.

Method:

add(Action) : This method appends a new menu item to the end of the menu which

 dispatches the specified Action object.

add(JMenuItem): This method appends the specified menu item to the end of this

 menu.

addPopupMenuListener(PopupMenuListener) This method adds

a PopupMenu listener.

addSeparator() : This method appends a new separator at the end of the menu.

Example:

import javax.swing.*;

import java.awt.event.*;

public class TPopUpMenu{

 JPopupMenu Pmenu;

 JMenuItem menuItem;

 public static void main(String[] args) {

 TPopUpMenu p = new TPopUpMenu();

 }

 public TPopUpMenu(){

 JFrame frame = new JFrame("Creating a Popup Menu");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Pmenu = new JPopupMenu();

 menuItem = new JMenuItem("Cut");

 Pmenu.add(menuItem);

 menuItem = new JMenuItem("Copy");

 Pmenu.add(menuItem);

http://publib.boulder.ibm.com/infocenter/wsadhelp/v5r1m2/topic/com.sun.api.doc/javax/swing/JPopupMenu.html#JPopupMenu()
http://publib.boulder.ibm.com/infocenter/wsadhelp/v5r1m2/topic/com.sun.api.doc/javax/swing/JPopupMenu.html#JPopupMenu(java.lang.String)
http://publib.boulder.ibm.com/infocenter/wsadhelp/v5r1m2/topic/com.sun.api.doc/javax/swing/JPopupMenu.html#add(javax.swing.Action)
http://publib.boulder.ibm.com/infocenter/wsadhelp/v5r1m2/topic/com.sun.api.doc/javax/swing/JPopupMenu.html#add(javax.swing.JMenuItem)
http://publib.boulder.ibm.com/infocenter/wsadhelp/v5r1m2/topic/com.sun.api.doc/javax/swing/JPopupMenu.html#addPopupMenuListener(javax.swing.event.PopupMenuListener)
http://publib.boulder.ibm.com/infocenter/wsadhelp/v5r1m2/topic/com.sun.api.doc/javax/swing/JPopupMenu.html#addSeparator()

11

 menuItem = new JMenuItem("Paste");

 Pmenu.add(menuItem);

 menuItem.addActionListener(new ActionListener(){

 public void actionPerformed(ActionEvent e){}

 });

 frame.addMouseListener(new MouseAdapter(){

 public void mouseReleased(MouseEvent Me){

 if(Me.isPopupTrigger()){

 Pmenu.show(Me.getComponent(), Me.getX(), Me.getY());

 }

 }

 });

 frame.setSize(400,400);

 frame.setVisible(true);

 }

}

2 d Write a program using JTree to generate the following hierarchical structure.

import java.awt.BorderLayout;

import javax.swing.ImageIcon;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JScrollPane;

import javax.swing.JTree;

import javax.swing.SwingUtilities;

import javax.swing.event.TreeSelectionEvent;

import javax.swing.event.TreeSelectionListener;

import javax.swing.tree.DefaultMutableTreeNode;

import javax.swing.tree.DefaultTreeCellRenderer;

public class TreeExample extends JFrame

{

 private JTree tree;

 private JLabel selectedLabel;

 public TreeExample()

 {

 //create the root node

 DefaultMutableTreeNode root = new DefaultMutableTreeNode("Root");

 //create the child nodes

 DefaultMutableTreeNode sem5Node = new DefaultMutableTreeNode("Semester

5");

 sem5Node.add(new DefaultMutableTreeNode("Network Security"));

12

 sem5Node.add(new DefaultMutableTreeNode("ASP.NET with C#"));

 sem5Node.add(new DefaultMutableTreeNode("Software Testing"));

 sem5Node.add(new DefaultMutableTreeNode("Advanced Java"));

 sem5Node.add(new DefaultMutableTreeNode("Linux Administration"));

 DefaultMutableTreeNode sem6Node = new DefaultMutableTreeNode("Semester

6");

 sem6Node.add(new DefaultMutableTreeNode("Internet Technologies"));

 sem6Node.add(new DefaultMutableTreeNode("Project Management"));

 sem6Node.add(new DefaultMutableTreeNode("Data Warehousing"));

 sem6Node.add(new DefaultMutableTreeNode("Elective"));

 //add the child nodes to the root node

 root.add(sem5Node);

 root.add(sem6Node);

 //create the tree by passing in the root node

 tree = new JTree(root);

 ImageIcon imageIcon = new

ImageIcon(TreeExample.class.getResource("/leaf.jpg"));

 DefaultTreeCellRenderer renderer = new DefaultTreeCellRenderer();

 renderer.setLeafIcon(imageIcon);

 tree.setCellRenderer(renderer);

 tree.setShowsRootHandles(true);

 tree.setRootVisible(false);

 add(new JScrollPane(tree));

 selectedLabel = new JLabel();

 add(selectedLabel, BorderLayout.SOUTH);

 tree.getSelectionModel().addTreeSelectionListener(new TreeSelectionListener() {

 @Override

 public void valueChanged(TreeSelectionEvent e) {

 System.out.println(e.getPath().toString());

 DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode)

tree.getLastSelectedPathComponent();

 selectedLabel.setText(selectedNode.getUserObject().toString());

 }

 });

 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setTitle("JTree Example");

 this.setSize(200, 200);

 this.setVisible(true);

13

 }

 public static void main(String[] args)

 {

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 new TreeExample();

 }

 });

 }

}

3 a What are servlets? What are the advantages of servlet over CGI?

What are Servlet?

A Java servlet is a server side program that services HTTP requests and return the results

as HTTP responses. A good analogy for a servlet is a non visual applet and runs on a

webserver.it has a lifecycle similar to that of an applet and runs inside a JVM at the web

server.The javax.Servlet and javax.Servlet.http packages provide interfaces and classes

for writing servlets. All servlets must implement the Servlet interface, which defines

lifecycle methods. When implementing a generic service, we can use or extend the

GenericServlet class provided with the Java Servlet API. The HttpServlet class provides

methods, such as doGet() and doPost(), for handling HTTP-specific services.

What are the advantages of servlet over CGI?

 Servlets are loaded into memory once and run from memory thereafter.

 Servlets are swapped as a thread, not as a process.

 Servlets are powerful object oriented abstraction of http.

 Servlets are portable across multiple web servers and platforms.

 Servlets are tightly integrated with web server.

 Servlets run within the secure and reliable scope of JVM

 Servlets provide direct database access using native and ODBC based Db

drivers.

 Being on the server side provide code protection.

 Servlets are robust, scalable, secure CGI replacement.

3 b

What is request Dispatcher? What are its two methods?

RequestDispatcher in Servlet

The RequestDispacher interface provides the facility of dispatching the request to another

resource it may be html, servlet or jsp.This interface can also be used to include the

content of antoher resource also. It is one of the way of servlet collaboration.

There are two methods defined in the RequestDispatcher interface.

14

Methods of RequestDispatcher interface

The RequestDispatcher interface provides two methods. They are:

1. public void forward(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Forwards a request from a servlet to

another resource (servlet, JSP file, or HTML file) on the server.

2. public void include(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Includes the content of a resource

(servlet, JSP page, or HTML file) in the response.

3 c Explain Generic Servlets with its constructors and methods.

Generic Servlets

 It extends javax.Servlet.GenericServlet.

 They are protocol independent. They contain no inherent HTTP support or any

other transport protocol.

The class GenericServlet provides a fundamental implementation of the Servlet interface

for protocol independent Servlets. It also implements the ServletConfig interface.

GenericServlet includes init() and destroy() methods. The service() method is declared as

abstract and must be overridden.

Class Structure:

public abstract class GenericServlet

 implements Servlet, ServletConfig, java.io.Serializable {

 // Constructors

 public GenericServlet();

 // We can add here instance Methods

……….

}

Constructor:

1) public GenericServlet(): The default GenericServlet constructor does not do any

work. Any Servlet initialization tasks should be performed in init() method, rather than in

the constructor.

15

Methods:

1) public void destroy(): This method is called by the server before unloading the

Servlet. A Servlet can override this method to save its state, free its resources, etc.

2) public String getInitParameter(String name): This method returns the value of the

named Servlet initialization parameter or null if no matching parameter is found.

3) getInitParameterNames():This method returns all the Servlets init parameter names

as an enumeration of String objects or an empty Enumeration if no parameters exist.

4) public ServletConfig getServletConfig():This method returns the Servlets

ServletConfig object. This method is not often called by a GenericServlet because all of

the ServletConfig methods are duplicated internally.

5) public ServletContext getServletContext():This method returns the Servlets

ServletContext object.

6) public String getServletInfo():This method returns a developer defined String that

describes the Servlet. A Servlet should override this method and provide a personalized

identity string.

7) public void init(ServletConfig config) throws ServletException: This method is

called by the server after the Servlet is first loaded and before the Servlets service()

method is called. It logs the Servlets initialization and stores the ServletConfig object for

use by the methods in the ServletConfig interface. A Servlet should always call the super

class implementation of init() using super.init(config) before executing any custom

initialization code.

8)public void log(String msg): This method writes the specified message to a Servlet log

in an event log file. The output format and location are server-specific with this method.

9) public abstract void service(ServletRequest req, ServletResponse res) throws

ServletException, IOException : This method is called to handle a single client request.

A Servlet gets request information through a ServletRequest object and sends data back to

the client through a ServletResponse object. This is the only method that must be

overridden when extending GenericServlet.

3 d Write a servlet application to find the sum of digits of the number entered by the

user through HTML form.

Step-1. Create a HTML file that displays a single text box and a Submit button.

Step-2. Create a new servlet.

Step-3. Run the servlet and get its URL, put the URL of the servlet in the forms action

attribute.

 Step-4. In the processRequest method of servlet get the value entered in the HTML form

by the user using getParameter() method.

Step-5. Convert the value into integer value and write the logic for finding the sum of the

digits.

Steps-6. Compile the servlet.

Step-7. Run the HTM file enter any value and submit, sum of the digits for the value will

be printed on browser.

(i) Servlet Code:-

import java.io.*;

import java.net.*;

import javax.servlet.*;

16

import javax.servlet.http.*;

public class Sum extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 Print Writer out = response.getWriter();

 String n=request.getParameter("number");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet Sum</title>");

 out.println("</head>");

 out.println("<body>");

 int j=1,i,m=0;

 int n1=Integer.parseInt(n)*j;

 do

 {

 i=n1%10;

 m=m+i;

 n1=n1/10;

 }

 while(n1>0);

 out.println("The Sum Of Digit Is"+m);

 out.println("</body>");

 out.println("</html>");

 out.close();

 }

}

(ii) HTML Code:-

<html>

 <head>

 <title></title>

 </head>

 <body>

 <form method="get" action="http://localhost:8084/sum/Sum">

 Enter The Number

 <Input type="text" name = "number">

 <input type ="submit" name="button" value="submit">

 </form>

 </body>

</html>

OUTPUT:-

(i) Sum Of Digits:-

17

(ii) Sum Of Digits:-

4 a What is JDBC driver? Explain the types of JDBC Drivers.

JDBC driver

The JDBC API defines the Java interfaces and classes that programmers use to connect to

databases and send queries. A JDBC driver implements these interfaces and classes for a

particular DBMS vendor. The JDBC driver converts JDBC calls into a network or

database protocol or into a database library API call that makes communication with the

database. This translation layer provides JDBC applications with database autonomy. In

the case of any back-end database change, only we need to just replace the JDBC driver

&some code modifications are required. “The Java program that uses the JDBC API loads

the specified driver for a particular DBMS before it actually connects to a database. After

thatthe JDBC DriverManager class then sends all JDBC API calls to the loaded driver”.

There are four types of JDBC drivers as follows:

1) Type 1- JDBC-ODBC Bridge plus ODBC driver:

This driver converts JDBC API calls into Microsoft Open Database Connectivity (ODBC)

calls that are then passed to the ODBC driver. The ODBC binary code must be loaded on

every client computer that uses this type of driver.

18

Type 1: JDBC-ODBC Bridge

Advantage: The JDBC-ODBC Bridge allows access to almost any database, since the

database's ODBC drivers are already available.

Disadvantages:

 The Bridge driver is not coded completely in Java; So Type 1 drivers are not

portable.

 It is not good for the Web Application because it is not portable.

 It is comparatively slowest thanthe other driver types.

 The client system requires the ODBC Installation to use the driver.

2) Type 2 - Native-API/ Partly Java driver:

This driver converts JDBC API calls into DBMSprecise client API calls. Similar to the

bridge driver, this type of driver requires that some binary code be loaded on each client

computer.

Native API/Partly Java Driver

Advantage: This type of divers are normally offer better performance than the JDBC-

ODBC Bridge as the layers of communication are less than that it and also it uses

Resident/NativeAPI which is Database specific.

Disadvantage:

 Mostly out of date now.

19

 It is usually not thread safe.

 This API must be installed in the Client System; therefore this type of drivers

cannot be used for the Internet Applications.

 Like JDBC-ODBC Bridgedrivers, it is not coded in Java which cause to portability

issue.

 If we modify the Database then we also have to change the Native API as it is

specific to a database.

3) Type 3 - JDBC-Net/Pure Java Driver:

This driver sends JDBC API calls to a middletier Net Server that translates the calls into

the DBMSprecise Network protocol. The translated calls are then sent to a particular

DBMS.

Advantage:

 This type of drivers is the most efficient amongst all driver types.

 This driver is totally coded in Java and hence Portable. It is suitable for the web

Applications.

 This driver is serverbased, so there is no need for any vendor database library to be

present on client machines.

 With this type of driver there are many opportunities to optimize portability,

performance, and scalability.

 The Net protocol can be designed to make the client JDBC driver very small and

fast to load.

 This normally provides support for features such as caching, load balancing etc.

 Provides facilities for System administration such as logging and auditing.

 This driver is very flexible allows access to multiple databases using one driver.

JDBC-Net/Pure Java Driver
Disadvantage : This driver It requires another server application to install and maintain.

Traversing the recordset may take longer, since the data comes through the back-end

server.

4)Type 4 - Native-protocol/Pure Java driver:

This driver converts JDBC API calls directly into the DBMSprecise network protocol

20

without a middle tier. This allows the client applications to connect directly to the

database server.

Native-protocol/Pure Java driver

Advantage:

 The Performance of this type of driver is normally quite good.

 This driver is completely written in Java to achieve platform independence and

eliminate deployment administration issues. It is most suitable for the web.

 In this driver number of translation layers are very less i.e. type 4 JDBC drivers

don't need to translate database requests to ODBC or a native connectivity

interface or to pass the request on to another server.

 We don’t need to install special software on the client or server.

 These drivers can be downloaded dynamically.

Disadvantage: With this type of drivers, the user needs a different driver for each

database.

4 b Explain JDBC architecture.

JDBC is a Java API for executing SQL statements and supports basic SQL functionality.

The JDBC (Java Database Connectivity) is an API that defines interfaces and classes for

writing database applications in Java by making database connections. It is a program

designed to access many popular database products on a number of operating system

platforms.Using JDBC we can send SQL, PL/SQL statements to almost any relational

database. It provides RDBMS access by allowing us to embed SQL inside Java code.

JDBC Architecture

The main function of the JDBC API is to provide a means for the developer to issue SQL

statements and process the results in a consistent, databaseindependently. JDBC provides

wealthy object-oriented access to databases by defining classes and interfaces that

represent objects such as:

 Database connections : (Short explanation Expected)

 SQL statements : (Short explanation Expected)

 Result Set: (Short explanation Expected)

 Database metadata: (Short explanation Expected)

21

 Prepared statements: (Short explanation Expected)

 Binary Large Objects (BLOBs): (Short explanation Expected)

 Character Large Objects (CLOBs): (Short explanation Expected)

 Callable statements : (Short explanation Expected)

 Database drivers: (Short explanation Expected)

 Driver manager: (Short explanation Expected)

The JDBC API uses a Driver Manager and databaseprecise drivers to provide clear

connectivity to heterogeneous databases. The JDBC driver manager ensures that the

correct driver is used to access each data source. The Driver Manager is capable of

supporting multiple concurrent drivers connected to multiple heterogeneous databases.

Layers of the JDBC Architecture

4 c What are the advantages and disadvantages of Java Server pages?

JavaServer Pages (JSP) is a serverside development technology that is used to create

dynamic web pages and applications. It is introduced after Java Servlets. With Servlets

Java became a full fledged application server programming language. This is achieved by

embedding Java code into HTML, XML, DHTML, or other document types. When a

client such as a web browser makes a request to the Java application container, which is

typically a web server, the static page is converted behind the scenes, and displayed as

dynamic content to the viewer.

1 Advantage of JSP:

• The JSP serves all facilities of Java i.e. write once run anywhere.

• JSP is ideal for Web based Technology.

• The JSP pages are translated and compiled into JAVA Servlet but are easier to

develop than JAVA Servlet.

• The JSP uses simplified scripting language based syntax for embedding HTML

into JSP.

22

• JSP containers provide easy coding for accessing standard objects and actions.

• JSP acquire all the benefits provided by JAVA Servlets and web container

environment.

• The JSP use HTTP as default request /response communication model.

2: Disadvantage:

• The JSP implementation is normally causes for poor diagnostics.

• Difficult looping in jsp.

• The space used to store JSP page is comparatively more.

• The first time loading of JSP is little bit time consuming because JSP pages must

be compiled on the server when first accessed.

4 d Write a JSP application that computes the cubes of the numbers from 1 to 10.

Simple code is expected with the output.

5 a Explain Model-view-controller architecture.

MVC Architecture

The MVC stands for Model, View, and Controller architecture. The MVC architecture

separates the business logic and application data from the presentation data to the

user.MVC is design pattern which allows a developer to write their applications in a

specific format, following the same directory structure, using the same configuration,

allowing making unique chain between the components & documents of the application.

Core parts of MVC architecture.

1) Model: The model object only represents the data of an application. The model object

knows about all the data that need to be displayed. The model is aware about all the

operations that can be applied to transform that object. The model represents enterprise

data and the business rules that govern access to and updates of this data. Model is not

concern about the presentation data and how that data will be displayed to the browser.

2) View: The view represents the presentation of the application. The view object refers to

the model. It uses the query methods of the model to obtain the contents and renders it.

The view is not dependent on the application logic. It remains same if there is any

modification in the business logic. It is the responsibility of the view's to maintain the

consistency in its presentation when the model (data or logic) changes.

3) Controller: Whenever the user sends a request for something then it always go

through the controller. The controller is responsible for intercepting the requests from

view and passes it to the model for the appropriate action. After the action has been taken

on the data, the controller is responsible for directing the appropriate view to the user. In

GUI applications the views and the controllers often work very closely together.

5 b Explain in detail phases of JSF life cycle.

JSF lifecycle

To understand how the framework treats the underlying request & Servlet API also how

Faces processes each request, we’ll go through the JSF request processing lifecycle.

A Java Server Faces page is represented by a tree of UI components, called a view.

During the lifecycle, the Java Server Faces implementation must build the view while

23

considering state saved from a previous submission of the page. When the client submits a

page, the Java Server Faces implementation performs several tasks, such as validating the

data input of components in the view and converting input data to types specified on the

server side. The Java Server Faces implementation performs all these tasks as a series of

steps in the Java Server Faces request response life cycle.

JSF Life cycle handles two kinds of requests:

Initial request: A user requests the page for the first time.

Postback: A user submits the form contained on a page that was previously loaded into

the browser as a result of executing an initial request.

The phases of the JSF application lifecycle are as follows:

Phase 1: Restore view

In this phase, JSF classes build the tree of UI components for the incoming request. When

a request for a JavaServer Faces page is made, such as when a link or a button is clicked,

the JavaServer Faces implementation begins the restore view phase.

The JSF framework controller uses the view ID means a name of JSP to look up the

components for the current view. If the view isn’t available, the JSF controller creates a

new one. If the view already exists, the JSF controller uses it. The view contains all the

GUI components and there is a great deal of state management by JSF to track the status

of the view – typically using HTML hidden fields.

Phase 2: ApplyRequest values

In this phase, the request parameters are examined and their values are used to set the

values of the corresponding UI components. This process is called decoding. If the

conversion of the value fails, an error message associated with the component is

generated. This message will be displayed during the render response phase, along with

any validation errors resulting from the process validations phase.

Phase 3: Process validations

In this phase triggers calls to all registered Validators.The components validate the new

values coming from the request against the application's validation rules. Any input can be

scanned by any number of Validators.These Validators can be predefined or defined by

the developer. Any validation errors will abort the requesthandling process and skip to

rendering the response with validation and conversion error messages.

Phase 4: Update Model Values

The Update Model phase brings a transfer of state from the UI component tree to any and

all backing beans, according to the value expressions defined for the components

themselves. In this phase converters are invoked to parse string representations of various

values to their proper primitive or object types. If the data cannot be converted to the types

specified by the bean properties, the life cycle calls directly to the render response phase

so that the page is re-rendered with errors displayed.

In Apply Request Values phase, it moves values from client side HTML form controls to

server side UI components; while Update model values phase the information moves from

24

the UI components to the backing beans.

Phase 5: Invoke Application

This phase handles any application level events. Normally this takes the form of a call to

process the action event generated by the submit button that the user clicked. In this

phase…

 Application level events are handled

 Application methods are invoked

 Navigation outcome are calculated

Phase 6: Render Response

The Render Response Phase brings several contrary behaviors together in one process like

values are transferred back to the UI components from the bean including any

modifications that may have been made by the bean itself or by the controller; The UI

components save their state, not just their values, but other attributes having to do with the

presentation itself. This can happen at serverside, but by default state is written into the

HTML as hidden input fields and thus returns to the JSF implementation with the next

request.

If the request is a Postback and errors were encountered during the apply request values

phase, process validations phase, or update model values phase, the original page is

rendered during this phase. If the pages contain message or messages tags, any queued

error messages are displayed on the page.

5 c Enumerate benefits of Enterprise beans.

Benefits of EJB:

1. Complete focus only on business logic.

2. Reusable components

3. Portable

4. Fast building of application

5. One business logic having many presentation logic.

6. Distributed deployment.

7. Application interoperability.

5 d Write a session bean code specification that...................

SICalculator.java File
This java file comes under ejbModule under EJB project
1.
2. import javax.annotation.PostConstruct;
3. import javax.annotation.PreDestroy;
4. import javax.ejb.Remote;
5. import javax.ejb.Stateless;
6.
7. /**
8. * Session Bean implementation class SICalculator
9. */
10. @Stateless
11. // This annotation create stateless session bean
12. public class SICalculator {

25

13. @PostConstruct
14. // This annotation invoked method before
15. // the first business method is invoked
16. // on the enterprise bean and after all
17. // dependency injection has completed.
18. void show() {
19. System.out.println
20. ("SICalculator started...");
21. }
22. @PreDestroy
23. // This annotation invoke method, when
24. // the bean is about to be destoryed by
25. // EJB container
26. void remove(){
27. System.out.println
28. ("SessionEjbBean ended...");
29. }
30. public double caculateSI
31. (double priciple, double rate, int time) {
32. return ((priciple * rate * time)/100) ;
33. }
34.
35. }

SessionServlet.java File
This java(servlet) file comes under web project src folder
view plaincopy to clipboardprint?

1. package com.tkhts;
2.
3. import java.io.IOException;
4. import java.io.PrintWriter;
5. import java.util.List;
6.
7. import javax.ejb.EJB;
8. import javax.servlet.ServletException;
9. import javax.servlet.annotation.WebServlet;
10. import javax.servlet.http.HttpServlet;
11. import javax.servlet.http.HttpServletRequest;
12. import javax.servlet.http.HttpServletResponse;
13.
14. /**
15. * Servlet implementation class SessionServlet
16. */
17. @WebServlet("/SessionServlet")
18. public class SessionServlet extends HttpServlet {
19. private static final long serialVersionUID = 1L;
20.
21. @EJB // @EJB is used to inject EJB's
22. SICalculator calculator;
23. protected void doGet(HttpServletRequest request,
24. HttpServletResponse response) throws
25. ServletException, IOException {
26. PrintWriter out = response.getWriter();
27. out.println("<html>");
28. out.println("<head>");
29. out.println(">title<Login Page</title>");
30. out.println("<body>");
31. out.println("<h2>Stateless Example!!</h2>");
32. try {
33. out.println("<h4> Simple interest =

http://www.tkhts.com/ejb/ejb-stateless-example.jsp
http://www.tkhts.com/ejb/ejb-stateless-example.jsp
http://www.tkhts.com/ejb/ejb-stateless-example.jsp
http://www.tkhts.com/ejb/ejb-stateless-example.jsp

26

34. "+calculator.caculateSI(20000, 3, 2)+"</h4>");
35. }
36. catch(Exception e){
37. e.printStackTrace();
38. }
39. out.println("</body>");
40. out.println("</html>");
41. }
42. }

Note :Now make new Enterprise Application project and add both EJB and

Web project and run the Enterprise Application project for output.

Output

6 a Explain Architecture of Hibernate framework in detail.

APPLICATION

Configuration Session

factory
Session

Transaction Query Criteria

Persistent

Objects

Java Transaction API JDBC JNDI

DATABASE

HIBERNATE

27

Hibernate architecture has three main components as follows:

1 Connection Management:

Hibernate Connection management service provide well-organized management of the

database connections. Database connection is the most expensive part of interacting with

the database as it requires a lot of resources of open and close the database connection.

2: Transaction management:

Transaction management service of hibernate provides the ability to the user to execute

more than one database statements at a time.

3 Object relational mapping:

Object relational mapping is technique of mapping the data representation from an object

model to a relational data model. This part of hibernate is used to select, insert, update and

delete the records form the underlying table. When we pass an object to a Session.save()

method, Hibernate reads the state of the variables of that object and executes the necessary

query.

4 configuration object

The configuration object represents a configuration or properties file for Hibernate.

It is usually created once during application initialization.

5.Session factory

The seession factory is created with the help of a configuration object during the

application start up.it serves as as factory for spawning session objects when

required.

6. session

Session objects are light weight and inexpensive to create.

They provide the main interface to perform actual database operation.

7.Transaction

Transaction represents a unit of work with the database.

8.Query

Persistent objects are retrieved using a query object.

9.Criteria

Persistent object can also be retrieved using a criteria object.

6 b Explain struture of hibernate.cfg.xml file

Hibernate uses the “hibernate.cfg.xml” file to create the connection & setup the required

environment.

28

This file contains information such as…..

1) Database Connection 2) Resource mapping

hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration

DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<session-factory>

<property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property>

<property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>

<property name="hibernate.connection.url"> jdbc:mysql://localhost:3306/Feedback

</property>

<property name="hibernate.connection.username">root</property>

<property name="hibernate.connection.password">root</property>

</session-factory>

</hibernate-configuration>

Explaination:

1. hibernate.connection.driver_class: It is the JDBC connection class for the

specific database.

2. hibernate.connection.url: It is the full JDBC URL to the database.

3. hibernate.connection.username: It is the username used to connection the

database.

4. hibernate.connection.password: It is the password used to authenticate the

username.

5. hibernate.dialect: It is the name of SQL dialect for the database.

6 c What is value stack in struts? State and exaplin the execution flow of value stack.

Value Stack:Value Stack is nothing but stack of objects. The Value Stack is a storage

area that holds all of the data associated with the processing of a Request.

Execution Flow of Value Stack:

1. The framework receives a request and decides on the action the URL maps to

2. The framework moves the data to the Value Stack whilst preparing for request

processing

3. The framework manipulates the data as required during the action execution

4. The framework reads the data from there and renders the results i.e. Response

page struts 2 maintains a stack of the following objects in the Value Stack:

1) Temporary Objects: Theseare generated and placed in the Value Stack during

execution. These objects provide temporary storage and are normallygenerated while

processing a request.For example, the current iteration value for a collection being looped

over in JSP tag.

29

2) The Model Object: If the application user Model objects, the current model object is

placed in the Value Stack before the Action executes.

3) The Action Object: It is the Action that is currently being executed.

4) Named Objects: Any object assigned to an identifier called as a Named Object.These

objects can either be created by the developer of pre-defined such as #application

Accessing Value Stack :The Value Stack can be accessed by simply using the tags

provided for JSP.

 When the Value Stack Is queried for an attribute value, each stack element, in the

provided order, is asked whether it holds the queried property.

 If it holds the queried property, then the value is returned.

 If it does not hold the queried property, then the next element down is queried.

This continues until the last element in the stack is scanned.

6 d Explain interceptors in struts.

Interceptors

Interceptors allow developing code that can be run before and/or after the execution of an

action. A request is usually processed as follows:

 A user requests a resource that maps to an action

 The Struts 2 framework invokes the appropriate action to serve the request

If interceptors are written, available and configured, then:

 Before the action is executed the invocation could be intercepted by another

object

 After the action executes, the invocation could be intercepted again by another

object

Such objects who intercept the invocation are called Interceptors.Conceptually,

interceptors are very similar to Servlet Filters or the JDKs Proxy class.

Interceptor Configuration: Interceptors configured in the struts.xml file appear as:

<interceptors>

 <interceptor name="test1" class="..."/>

 <interceptor name=”test2" class="..."/>

</interceptors>

<action name="WelcomeSturts">

30

 <interceptor-ref name=" test 1"/>

 <interceptor-ref name=" test 2"/>

 <result name="SUCCESS">/ Welcome.jsp</result>

 <result name="ERROR">/ Error.jsp</result>

</action>

In above code two interceptors named test1 and test2 are defined. Both of these are them

mapped to the action named WelcomeSturts.

Interceptor Stack: We can bind Interceptor together using an Interceptor Stack which

can be referenced together. We can use the same set of interceptors multiple times. So,

instead of configuring a number of interceptors every time, an interceptor stack can be

configured with all the required interceptors held within. To use Intercept Stack we need

to modify the struts.xml file as follows:

<interceptors>

 <interceptor name="test1" class="..."/>

 <interceptor name= test2" class="..."/>

 <interceptor-stack name="MyStack">

 <interceptor-ref name=" test1"/>

 <interceptor-ref name=" test2"/>

 </interceptor-stack>

</interceptors>

<action name="WelcomeSturts " class="test.WelcomeSturts ">

 <result name="SUCCESS">/ Welcome.jsp</result>

 <result name="ERROR">/ Error.jsp</result>

</action>

In above code two interceptors named test1and test2 are defined and a stack

named MyStackgroup them both.The stack holding both these interceptors is then

mapped to the Action named WelcomeStruts.

Execution Flow of Interceptors: Interceptors are executed as follows:

1. The framework receives a request and decides on the action the URL maps to

2. The framework consults the application's configuration file, to discover which

interceptors should fire and in what sequence

3. The framework starts the invocation process by executing the first Interceptor in

the Stack

4. After all the interceptors are invoked, the framework causes the action itself to be

executed.
5.

31

7 a What is CheckBoxGroup? Explain with Example.

A check box is a control that is used when there are multiple options and multiple

selections to turn an option on or off. It consists of a small box that can either contain a

check mark or not.

CheckboxGroup

It is possible to create a set of mutually exclusive check boxes in which one and only one

check box in the group can be checked at any one time. These check boxes are often

called radio buttons. Check box groups are objects of type CheckboxGroup. Only the

default constructor is defined, which creates an empty group.

Methods:

Checkbox getSelectedCheckbox() : Reads the selected radio button option from group

void setSelectedCheckbox(Checkbox which): Selects radio button option of a group.

Example:

import java.applet.*;

import java.awt.*;

/*

<applet code="TCBCBG" width=200 height=150>

</applet>

*/

public class TCBCBG extends Applet {

Checkbox morning,noon,evening;

 public void init() {

 this.add(new Label("How will you pay for your pizza?"));

 CheckboxGroup cbg = new CheckboxGroup();

 this.add(new Checkbox("Visa", cbg, false));

 this.add(new Checkbox("Cash", cbg, true)); // the default

 this.add(new Label("Select Time Slots for Delivery"));

 morning = new Checkbox("Morning", null, true);

 noon = new Checkbox("Afternoon");

 evening = new Checkbox("Evening");

 this.add(morning);

 this.add(noon);

 this.add(evening);

 }

}

32

7 b Explain JScrollPane and JScrollBar with example.

JScrollPane

Provides a scrollable view of a lightweight component. A JScrollPane manages a

viewport, optional vertical and horizontal scroll bars, and optional row and column

heading viewports. You can find task-oriented documentation ofJScrollPane in How to

Use Scroll Panes, a section in The Java Tutorial. Note that JScrollPane does not support

heavyweight components.

Example

import java.awt.*;

import javax.swing.*;

class ScrolledPane extends JFrame

{

 Private JScrollPane scrollPane;

 public ScrolledPane()

 {

 setTitle("Scrolling Pane Application");

 setSize(300, 200);

 setBackground(Color.gray);

 JPanel topPanel = new JPanel();

 topPanel.setLayout(new BorderLayout());

 getContentPane().add(topPanel);

 Icon image = new ImageIcon("main.gif");

 JLabel label = new JLabel(image);

 // Create a tabbed pane

 scrollPane = new JScrollPane();

 scrollPane.getViewport().add(label);

 topPanel.add(scrollPane, BorderLayout.CENTER);

 }

 public static void main(String args[])

 {

 // Create an instance of the test application

 ScrolledPane mainFrame = new ScrolledPane();

 mainFrame.setVisible(true);

 }

}

http://java.sun.com/docs/books/tutorial/uiswing/components/scrollpane.html
http://java.sun.com/docs/books/tutorial/uiswing/components/scrollpane.html

33

JScrollBar:

The JScrollBar lets the user graphically select a value by sliding a knob within a bounded

interval. It is us a very useful component when we want to display large amount of

elements on the screen.

Constructors:

JScrollBar (): It Creates a JScrollBar instance with a range of 0-100, an initial value of 0,

and vertical orientation.

JScrollBar (int Orientation) : It creates a JScrollBar instance with a range of 0-100, an

initial value of 0, and the specified orientation.

Methods :

addAdjustmentListener (AdjustmentListener Handler) : Use to handle the scroll bar

events.

getValue () : It gives the current value of scroll bar.

setBackground (Color BackgroundColor) : Sets the color to scroll bar background.

setMaximum (int Max) :The maximum value of the scrollbar is maximum – extent.

setMinimum (int Min) : Returns the minimum value supported by the scrollbar (usually

zero).

setValue (int Value) :Sets the scrollbar's value.

7 C

Explain the life cycle of servlet

The following are the life cycle methods of a Servlet instance:.

1: init()

This method is called once for a Servlet instance. When first time Servlet is called, Servlet

container creates instance of that Servlet and loaded into the memory. Future requests will

be served by the same instance without creating the new instance. init() method is used

for inilializing Servlet variables which are required to be passed from the deployment

descriptor web.xml. ServletConfig is passed as the parameter to init() method which stores

all the values configured in the web.xml.

2: service()

This method is called for the each request. This is the entry point for the every Servlet

request and here we have to write ourbusinesslogic or any other processes. This method

takes HttpServletRequest and HttpServletresponse as the parameters.

34

3: destroy()

 This method will be called once for an instance. It is used for releasing any resources

used by the Servlet instance. Most of the times it could be database connections, file IO

operations, etc. destroy () is called by the container when it is removing the instance from

the Servlet container.

SERVLET LIFE CYCLE

Server initializes

the servlet by

invoking init()

Client request

arrives

Server delegates the

client request to the

servlet through

service()

Service()

processes the

client request

Service() returns

the output to the

client

Servlet wait

until next

client request

arrives

Servlet calls

destroy()
Servlet is

unloaded by

the server

Server locates

and loads the

servlet
Server instantiates

one or more object

instances of the

servlet class

35

7 d Write a JDBC program that inserts values in database. [table Name : Employee,

Fileds : Empid, Name, Dept, Designation]

7 e What are the difftrent typres of enterprise beans? Explain.

Enterprise java beans are reusable modules of code that combine related tasks into well

defined interface. These enterprise beans EJB components contain the method that

executes business logic and access data sources.

1: Session beans:

A) Stateful Session Beans: Stateful Session Beans are business objects having state,

means they can keep track of which calling client they are dealing with throughout a

session and thus access to the bean instance is strictly limited to “only one client at a

time”. In the case of concurrent access to a single bean is attempted anyway the container

serializes those requests, but via the @AccessTimeout annotation the container can throw

an exception instead. Stateful session beans' state may be persisted automatically by the

container to free up memory after the client hasn't accessed the bean for some time.

Example:

The hotel check out may be handled by a stateful session bean that would use its state to

keep track of where the customer is in the checkout process, possibly holding locks on the

items the customer is charged for services.

B) Stateless Session Beans: Stateless Session Beans are business objects that do not have

state associated with them. Access to a single bean instance is limited to only one client at

a time and thus concurrent access to the bean is banned. In case concurrent access to a

single bean is attempted anyway the container simply routes each request to a different

instance. Instances of Stateless Session beans are typically pooled. If a second client

accesses a specific bean right after a method call on it made by a first client has finished, it

might get the same instance. Example: Sending an Email to customer support may be

handled by a stateless bean since this is a oneoff operation and not part of a multistep

process.

C) Singleton Session Beans: Singleton Session Beans are business objects having a

global shared state in a JVM. Concurrent access to the one and only bean instance can be

controlled by the container or by the bean itself. Container Managed concurrency can be

tuned using the @Lock annotation, that designates whether a read lock or a write lock

will be used for a method call. Also the Singleton Session Beans can explicitly request to

be instantiated when the EJB container starts up, using the @Startup annotation.

Examples: Loading a daily price list that will be the same for every user might be done

with a singleton session bean, since this will prevent the application having to do the same

query to a database over and over again.

14.4.2: Message Driven Beans:

Message Driven Beans are business objects whose execution is happened by the messages

instead by method calls. Like session beans, a Message Driven Beans does not have any

type of client view, i.e. clients cannot lookup a Message Driven Beans instance. It just

listens for any incoming message on, for example, a JMS queue or topic and processes

them automatically. Message Driven Beans can support many messaging protocols. The

36

difference between session- and message driven beans is only in method calling and

messaging.

Example: Submitting a job to a work bunch might be done by sending a JMS message to

a 'message queue' and could also be handled by a Message Driven Bean.

7 f What is OGNL? Explainthe execution flow of OGNL.

OGNL [Object-Graph Navigation Language]

The Object-Graph Navigation Language is a fully featured expression language for

Retrieving and Setting properties of the Java object s. It helps data transfer and type

conversion.

In the Value Stack,Searching or evaluating, a particular expression can be done using

OGNL. OGNL provides a mechanism to navigate object graphs using a dot notation and

evaluate expressions, including calling methods on the objects being retrieved.

OGNL supportsType conversion, calling methods, Collectionmanipulation, Generation,

Projection across collections, Expression evaluation, Lambda expressions etc

OGNL Examples

The following are a few examples where OGNL is used:

 emp.name
It returns the value that is actually returned when getEmp().getName() is Invoked

 emp.toSpring()

It returns the value that is actually returned when getEmp().toString() is invoked.

 @test.auth.name@fName()
It returns the value that is actual returned when the static method named fName()

is invoked on the class name.

 firstName in {"Sharanam","vaishali"}

invokes getfName() and determines he the value returned is either Tushar or

Sonali. If it is, then returns True.

Execution flow of OGNL :

1. A user enters the data in and data entry form and submits the form

2. The Request enters the Struts 2 framework and is made available to the Java

Language as an HttpServletRequest object.

3. The request paramets are stored as name/value paris where the name are the

Names of the data entry from's text fields and the Value are the Value entered by

the user when the form is submitted

4. Now the OGNL comes into picture , to handle the transfer and type conversion of

the data from these request parameters

5. Using the OGNL expression , the value stack is scanned to locate the destination

property where the data has to be moved

6. On locating the correct property in the Value Stack, the data is moved to the

37

property by invoking the property's SETTER method with the appropriate value.

The value stack acts as a place holder for viewing the data model throughout the

execution

7. Whilst moving such data, OGNL consults its set of available type converters to

determine if any of them can handle this particular conversion, if a conversion is

required. The value is converted and set on the object's property. This makes the

data available them action begins its job, immediately after the available

Interceptors ate fired.

8. After Action completes to its job successfully, a Result fires that renders the result

they to the user.

9. Results have access to the Value Stack, via the OGNL expression language with

the help of tags. These tags retrieve data from the Value Stack by referencing

specific values using OGNL expressions.

10. Whilst rendering the view , once again, the value that is accessed from the value

Slack is converted from the java type to a String that is written on the HTML page

	AJQ
	AJS

